Home Repair (alt.home.repair) For all homeowners and DIYers with many experienced tradesmen. Solve your toughest home fix-it problems.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
 
Posts: n/a
Default New house - Should I consider gas heat?

I am building a new home in SE Virginia. I am wondering if I should
consider gas heat. What are the pros & cons.

Thanks.
  #3   Report Post  
Edwin Pawlowski
 
Posts: n/a
Default


wrote in message
...
I am building a new home in SE Virginia. I am wondering if I should
consider gas heat. What are the pros & cons.

Thanks.


Over the years the cost of energy has changed so gas may no longer have the
advantage in cost, but it is still less maintenance, cleaner burning, always
available. Gas cooking, IMO, is superior also for the faster heat control.
A gas range will still work if the power goes out because you can light the
burners with a match.


  #6   Report Post  
 
Posts: n/a
Default

herein ky, nat gas used to be 1/3 the cost of elec to eat. now a heat
pump is 1/3 the cost to heat than gas, and who knows if another enron
situation will shoot up nat gas prices. your in a mild winter location i
think so heat pump should work fine, i got heat pump with a coil that
goes into the ground and it only cost me 40.00 a month to heat my house
here in ky.lucas

  #7   Report Post  
borgunit
 
Posts: n/a
Default

One thing I found out is that when we had an ice storm and lost power
for a few days in the winter. If you have a generator, the power to
run the blower is a lot less and the gas furnace can keep your house
warm while the generator requirements of an electric furnace may be
pretty high. FYI

  #8   Report Post  
 
Posts: n/a
Default

My question was poorly asked - sorry.

I will need to choose between LP gas and an elec. heat pump. Oil is out of
the question because of environmental issues on this particular site.

If an elec heat pump then there will be a choice between a conventional or
ground source heat pump.

If a ground source, there would be a choice between open and closed loop
systems.

If open loop, the water source would be from a 400 foot well with water in
the well casing rising to about 180' below ground surface. I mention this
because of energy considerations. (Energy to pump the water). If I went
this route I am not sure what the implications of disposing of the water
might be, or system unreliability to clogging of some sort from the water.
There is a small river which empties into the Chesapeake Bay and I expect
that I would not be allowed to discharge water into it.

The setting is wooded, but due to clearing for the house it may get quite a
bit of sun during its early years.


Thanks for any help.

On Fri, 06 May 2005 01:22:41 -0400, wrote:

I am building a new home in SE Virginia. I am wondering if I should
consider gas heat. What are the pros & cons.

Thanks.


  #9   Report Post  
Michael Dauria
 
Posts: n/a
Default

Edwin Pawlowski wrote:
wrote in message
...

I am building a new home in SE Virginia. I am wondering if I should
consider gas heat. What are the pros & cons.

Thanks.



Over the years the cost of energy has changed so gas may no longer have the
advantage in cost, but it is still less maintenance, cleaner burning, always
available. Gas cooking, IMO, is superior also for the faster heat control.
A gas range will still work if the power goes out because you can light the
burners with a match.



You can light the burners with a match? I thought you couldn't do that
anymore?
  #10   Report Post  
Edwin Pawlowski
 
Posts: n/a
Default


"Michael Dauria" wrote in message

You can light the burners with a match? I thought you couldn't do that
anymore?


You cannot light the oven as it has a igniter that glows while it is on, but
AFAIK, you can still light the top burners. You can on all the ones I'm
aware of, but there could be exceptions.




  #12   Report Post  
 
Posts: n/a
Default

Edwin Pawlowski wrote:

I am building a new home in SE Virginia...


...a good climate for solar heating with a sunspace. NREL says 1080
Btu/ft^2 of sun falls on a Norfolk south wall on an average 39.1 F
January day with a 47.3 daily max, so the average daytime temp is
about 43. A single layer of polycarbonate plastic sunspace glazing
would gain 0.9x1080 = 972 Btu/ft^2 and lose about 6h(80-43)1ft^2/R1
= 222, for a 750 Btu/ft^2 per day net gain.


January is the worst-case month for solar house heating in Norfolk, with
the least "sun per degree day," ie 1080/(70-39.1) = 35.0 Btu/F in January
vs 1040/(70-43.8) = 39.7 in December. "Worst-case design" is common in
aerospace engineering, but rarely used for solar houses. If it were, more
would be close to 100% solar-heated. It isn't hard. If cloudy days are
coin-flips and a house can store enough solar heat for 1 cloudy day, it
can be at most 50% solar-heated... 2 days make 75% max, 3, 88%, 4, 94%,
and 5, 97%, but few store heat for more than 1 cloudy day.

First make sure the house can keep itself warm on an average day in the
worst-case month: a 48'x46'x8' tall house with 200 ft^2 of R4 windows and
R16 SIP walls and ceiling and 0.2 ACH of air leaks would have 200ft^2/R4
= 50 Btu/h-F of window thermal conductance + 1336ft^2/R16 = 84 for walls
+ 2304/16 = 144 for the ceiling + about 0.2x2304x8/60 = 61 for air leakage,
totaling 339 Btu/h-F. On an average January day in Norfolk, it would need
24h(65-39.1)339 = 210.7K Btu of heat.

A frugal 600 kWh/mo of indoor electrical use could provide 68.2K Btu/day.
NREL says 470, 480, and 210 Btu/ft^2 fall on east, west, and north walls, and
710 falls on the ground, so 100 ft^2 of south windows and 50 on the east
and west walls and 25 on the north with 50% solar transmission would gain
0.5x25(4x1080+2x470+480+210) = 74,275 Btu/day, leaving 210.7K-74,275 = 68.2K.
That might come from 68.2K/750 = 91 ft^2 of south sunspace glazing.

With no sun, the house needs 210.7K-68.2K = 142.5K Btu on a 39.1 F day,
or 712.5K for 5 cloudy days. At 70 F, with no electrical use, it needs
(70-39.1)339 = 10.5K Btu/h, eg 2304 ft^2 of R1 radiant floor with water
at 70+10.5K/2304 = 74.5 F from a 4'x8'x4' 7978 lb EPDM-lined plywood box
that cools from 74.5+712.5K/7978 = 164 F to 74.5 F over 5 cloudy days.

As an alternative to a radiant floor and tank, hot water might live in
poly film ducts on plywood shelves under the ceiling, with foil under the
shelves to avoid overheating the rooms by radiation and slow ceiling fans
and room temp thermostats to move warm air down as needed on cloudy days.

If 10.5K Btu/h flows from temp T water through 24'x48' of R0.27 shelf
surface into 70 F air with a 10.5K/(24x48/0.27) = 2.4 F temp drop, the
min usable water temp is 72.4 F. If it's initially 110 F, the ducts need
712.5K/(110-72.4) = 18.9K lb, ie 12x18.9K/(24x48x62.33) = 3.2 inches of
water (with 800' ($80) of 1/2" PE pipe inside to preheat pressurized water
for showers and a simple greywater-house air heat exchanger.) We already
figured the ceiling would lose 24h(65-39.1)2304/16 = 89.5K Btu on a cloudy
day. Over (110+72.4)/2 = 91.2 water for 5 cloudy days, it would lose
89.5K/day if 24h(91.2-39.1)2304/R = 89.5K, with an R = 32 ceiling SIP.

On an average day, it would lose about 24h(110-39.1)2304/32 = 122.5K Btu,
33K more than we figured before. A solar attic might collect 68.2K Btu
more than that, ie 101.2K Btu/day in 110 F water, to avoid the need for a
sunspace. The attic ridge might be 4' above the ceiling, with 8' of clear
corrugated polycarbonate Dyanglas roofing that slopes down to the south
wall at ceiling level and a 4'x24' draindown pond solar collector on the
6.92'x48' R32 floor. The north part of the attic could be a cathedral
ceiling with exposed rafters to form a truss that supports duct shelves.
A few clerestory windows in the 4'x48' reflective back wall of the attic
would add light and architectural drama.

On an average Jan day, the pond (a 4'x24' layer of poly film over 2" of
water over a 4'x24' piece of EPDM rubber) would collect approximately
0.9x24(4x710+0.9x2.27x1080) = 109K Btu of direct and reflected sun and
lose about 6h(110-T)4'x24'x1.5 = 864(110-T) Btu to T (F) attic air. The
non-pond attic would gain about 0.9x(236x710+234x1080) = 378.3K Btu plus
864(T-110) from the pond and lose about 6h(T-43)8x48/R1 = 2304(T-43),
which makes 378.3K + 864(110-T) = 2304(T-43), so T = 181 F, or less,
with some white attic floor and more radiation loss.

So do you recommend gas or oil along with the solar?


An interesting question. Most "solar" houses are only 30-60% solar-heated,
so the backup fuel cost is important. PE Norman Saunders estimates how
often his near-100% solar heated houses in cold, cloudy New England will
need "purchased energy" like other engineers estimate 100-year floods.
("Your house will need backup heat for 3 hours every 35 years.") And his
predictions come true. He's been designing solar houses since 1946, and
some have long track records with digital data loggers.

He suggests buying a 5 kW electric space heater for backup, figuring it's
inexpensive if rarely used, but some of his clients have never done that.
They prefer to wear sweaters indoors every 35 years :-)

Nick

Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
An air-soil solar sub-basement heat battery [email protected] Home Repair 10 March 14th 05 11:50 PM
Whole house A/C, heat pump or just A/C? Nick Home Repair 15 February 16th 05 02:29 PM
Speedfit technique Arthur UK diy 615 November 23rd 04 11:50 PM
Using deep well water fro cooling / heating & other ideas energy_freak UK diy 4 September 29th 04 05:31 PM
more fun with air conditioning J Jensen Home Ownership 56 September 7th 04 06:20 AM


All times are GMT +1. The time now is 02:11 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"