Metalworking (rec.crafts.metalworking) Discuss various aspects of working with metal, such as machining, welding, metal joining, screwing, casting, hardening/tempering, blacksmithing/forging, spinning and hammer work, sheet metal work.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 364
Default Rotary table/indexer

Alright folks , I got the gear book (gotta brush up on my math !) ... and
I got some messed up gears on the lathe that need replacing . My research
indicates that the most flexible setup (though not the "best" for every
task) is a rotary table with indexing capability . My next decision is size
.. My baby mill has a max of 18" table to spindle . The table is 9X32" and
moves 8X21" .
I'm thinking that 6" might be a bit too big , most of the gears are in the
2" to 5" diameter range ... but I don't want to limit myself to what may
come in the future . 3" is definitely too small , 4" is iffy , and I haven't
seen a 5 .
--
Snag
Decisions , decisions ...


  #2   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 460
Default Rotary table/indexer

Wrong answer. You need a proper dividing head and tail stock to match. These
come with chucks and are quite stiff. An indexing table has no chuck. If
the gears are helical or hypoid the dividing head should be differential as
well, but that also require a drive setup from the table leadscrew to a
gearcase with changeable gears. By your description of your mill, it will
not be capable of this. So all you can make will be straight tooth gears.
You did not state whether your mill is a horizontal or vertical, but the
mill must be horizontal or a vertical with a special horizontal drive,
because the only cutters that I know of that are available for the different
tooth patterns and pitch diameters come in 8 cutter sets for horizontal
arbors.
Steve

"Terry Coombs" wrote in message
. ..
Alright folks , I got the gear book (gotta brush up on my math !) ... and
I got some messed up gears on the lathe that need replacing . My research
indicates that the most flexible setup (though not the "best" for every
task) is a rotary table with indexing capability . My next decision is
size . My baby mill has a max of 18" table to spindle . The table is 9X32"
and moves 8X21" .
I'm thinking that 6" might be a bit too big , most of the gears are in
the 2" to 5" diameter range ... but I don't want to limit myself to what
may come in the future . 3" is definitely too small , 4" is iffy , and I
haven't seen a 5 .
--
Snag
Decisions , decisions ...



  #3   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 364
Default Rotary table/indexer

Steve Lusardi wrote:
Wrong answer. You need a proper dividing head and tail stock to
match. These come with chucks and are quite stiff. An indexing table
has no chuck. If the gears are helical or hypoid the dividing head
should be differential as well, but that also require a drive setup
from the table leadscrew to a gearcase with changeable gears. By your
description of your mill, it will not be capable of this. So all you
can make will be straight tooth gears.


Zackly !

You did not state whether your
mill is a horizontal or vertical, but the mill must be horizontal or
a vertical with a special horizontal drive, because the only cutters
that I know of that are available for the different tooth patterns
and pitch diameters come in 8 cutter sets for horizontal arbors.
Steve

It's a vertical tabletop model . I want to make my own cutters on the
lathe/mill, and cut straight cut gears to replace some with broken teeth for
my Logan Lathe . There will be other tasks which require a rotating table ,
not necessarily indexed that closely . I'm looking for FLEXIBILITY in
addition to CAPABILITY . Most rotary tables also have a MT hole to mount
centers , and slots that can mount a chuck if needed . Widen your field of
view , Steve , you seem to have a case of tunnel vision .
--
Snag
'90 Ultra "Strider"
'39 WLDD "Popcycle"
Buncha cars and a truck


  #4   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 2,152
Default Rotary table/indexer

On Mon, 1 Sep 2008 23:45:23 +0200, "Steve Lusardi"
wrote:
snip
You need a proper dividing head and tail stock to match. These
come with chucks and are quite stiff. An indexing table has no chuck. If
the gears are helical or hypoid the dividing head should be differential as
well, but that also require a drive setup from the table leadscrew to a
gearcase with changeable gears.

snip
-----------------------------------
Actually this is the answer if you have bags of money and space.

Assuming you don't, and the lathe gears you are talking about are
straight cut change gears, the rotary table should work quite
well. It just won't be as quite as rigid, and there will be some
gear teeth numbers [prime generally] you can't cut because the
dividing plates won't have the correct number of holes.

The work around is to use the vernier settings and directly
machine the gears, or drill a plate with the correct number of
holes. Because of the way dividing heads work, the spacing will
be more accurate by the dividing head gear factor. If you are
extremely annal retentive you can use this plate to drill a third
yet more accurate plate.

While some of the rotary tables /dividing heads have B&S or other
tapers, most of the new ones are #2 Morse tapers in the smaller
sizes but be sure to check.
The one I have is
http://www.wttool.com/product-exec/product_id/20850
and fits [snuggly] on my Emco Compact 10.
http://mcduffee-associates.us/machining/emcoLathes.htm
The dividing plates are extra
http://www.wttool.com/product-exec/p...ding_Plate_Set


The Little Machine Shop has machinable #2 Morse taper arbors that
will greatly simplify your task, as these are pre drilled/tapped
for a spindel/retention bolt, and only need the head machined to
the correct diameter. If you don't have a #2 taper adapter for
your lathe, get one of the sleeves and use a 4 jaw chuck. [Or a
MT adapter to fit your spindle but you will most likely have to
saw the back half off.] These are also available in #3MT and work
well for making the single point fly cutter described in Law's
book.
http://littlemachineshop.com/product...2394&category=
http://www.use-enco.com/CGI/INSRIT?P...PARTPG=INLMK32

Depending on the accuracy desired you can hand grind a single
point tool to fit an existing gear or buy B&S style involute
cutters. As indicated in Law's book these cover a limited range
of teeth, but for most shop use you will only #s 2,3,4 [26 to 134
teeth]
http://www.newmantools.com/cutters/gear.htm [be setting down when
checking prices also note that some of these are UK suppliers]
http://www.rdgtools.co.uk/acatalog/1...R_CUTTERS.html
one of the few US suppliers I have been able to locate is
http://www.jtsmachine.com/jtswebshop...Tools/C027.asp
Be sure and get an arbor to fit your mill spindle at the same
time.

Also order a slitting or slotting saw of the correct thickness
w/arbor to hog out most of the material to reduce the load on the
hard to grind single point cutter or expensive formed cutter.

Some hints:

(1) unless functionally required, make the gears flat sided with
no undercuts. Typically store bought cast/forged gears are
dished to reduce the amount of material. This leads directly
into hint 2.
(2) Cut the bigger gears first. Then when you ding one you can
turn it down to a smaller size blank, and not lose the work you
did machining the bore, key way and probably the thickness.

Also it may be helpful to install a pin on the gear arbor that
will engage the drive slot in the gear bore. This is
particularly helpful when lathe turning the OD and thickness of
the gear, although you can do this with an end mill and the
rotary table.


Also consider alternate materials for your change gears. In many
cases the manufacturers used cast iron because that was all they
had. Phenolic/Formica, delrin, nylon, and possibly aluminum may
be a better alternative, cheaper and more easily located. 6061
T6 has worked well for change gears for my Emco.
http://www.use-enco.com/CGI/INSRIT?P...PARTPG=INLMK32
http://www.use-enco.com/CGI/INSRIT?P...PARTPG=INLMK32

Good luck and let the group know what you decide and how you make
out.


Unka' George [George McDuffee]
-------------------------------------------
He that will not apply new remedies,
must expect new evils:
for Time is the greatest innovator: and
if Time, of course, alter things to the worse,
and wisdom and counsel shall not alter them to the better,
what shall be the end?

Francis Bacon (1561-1626), English philosopher, essayist, statesman.
Essays, "Of Innovations" (1597-1625).
  #5   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 364
Default Rotary table/indexer

F. George McDuffee wrote:
On Mon, 1 Sep 2008 23:45:23 +0200, "Steve Lusardi"
wrote:
snip
You need a proper dividing head and tail stock to match. These
come with chucks and are quite stiff. An indexing table has no
chuck. If the gears are helical or hypoid the dividing head should
be differential as well, but that also require a drive setup from
the table leadscrew to a gearcase with changeable gears.

snip
-----------------------------------
Actually this is the answer if you have bags of money and space.

Assuming you don't, and the lathe gears you are talking about are
straight cut change gears, the rotary table should work quite
well. It just won't be as quite as rigid, and there will be some
gear teeth numbers [prime generally] you can't cut because the
dividing plates won't have the correct number of holes.

The work around is to use the vernier settings and directly
machine the gears, or drill a plate with the correct number of
holes. Because of the way dividing heads work, the spacing will
be more accurate by the dividing head gear factor. If you are
extremely annal retentive you can use this plate to drill a third
yet more accurate plate.

While some of the rotary tables /dividing heads have B&S or other
tapers, most of the new ones are #2 Morse tapers in the smaller
sizes but be sure to check.
The one I have is
http://www.wttool.com/product-exec/product_id/20850
and fits [snuggly] on my Emco Compact 10.
http://mcduffee-associates.us/machining/emcoLathes.htm
The dividing plates are extra
http://www.wttool.com/product-exec/p...ding_Plate_Set


The Little Machine Shop has machinable #2 Morse taper arbors that
will greatly simplify your task, as these are pre drilled/tapped
for a spindel/retention bolt, and only need the head machined to
the correct diameter. If you don't have a #2 taper adapter for
your lathe, get one of the sleeves and use a 4 jaw chuck. [Or a
MT adapter to fit your spindle but you will most likely have to
saw the back half off.] These are also available in #3MT and work
well for making the single point fly cutter described in Law's
book.
http://littlemachineshop.com/product...2394&category=
http://www.use-enco.com/CGI/INSRIT?P...PARTPG=INLMK32

Depending on the accuracy desired you can hand grind a single
point tool to fit an existing gear or buy B&S style involute
cutters. As indicated in Law's book these cover a limited range
of teeth, but for most shop use you will only #s 2,3,4 [26 to 134
teeth]
http://www.newmantools.com/cutters/gear.htm [be setting down when
checking prices also note that some of these are UK suppliers]
http://www.rdgtools.co.uk/acatalog/1...R_CUTTERS.html
one of the few US suppliers I have been able to locate is
http://www.jtsmachine.com/jtswebshop...Tools/C027.asp
Be sure and get an arbor to fit your mill spindle at the same
time.

Also order a slitting or slotting saw of the correct thickness
w/arbor to hog out most of the material to reduce the load on the
hard to grind single point cutter or expensive formed cutter.

Some hints:

(1) unless functionally required, make the gears flat sided with
no undercuts. Typically store bought cast/forged gears are
dished to reduce the amount of material. This leads directly
into hint 2.
(2) Cut the bigger gears first. Then when you ding one you can
turn it down to a smaller size blank, and not lose the work you
did machining the bore, key way and probably the thickness.

Also it may be helpful to install a pin on the gear arbor that
will engage the drive slot in the gear bore. This is
particularly helpful when lathe turning the OD and thickness of
the gear, although you can do this with an end mill and the
rotary table.


Also consider alternate materials for your change gears. In many
cases the manufacturers used cast iron because that was all they
had. Phenolic/Formica, delrin, nylon, and possibly aluminum may
be a better alternative, cheaper and more easily located. 6061
T6 has worked well for change gears for my Emco.
http://www.use-enco.com/CGI/INSRIT?P...PARTPG=INLMK32
http://www.use-enco.com/CGI/INSRIT?P...PARTPG=INLMK32

Good luck and let the group know what you decide and how you make
out.


Unka' George [George McDuffee]


It's SO refreshing to get encouragement ! THANK YOU !!
--
Snag
'90 Ultra "Strider"
'39 WLDD "Popcycle"
Buncha cars and a truck




  #6   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 2,163
Default Rotary table/indexer

On Mon, 1 Sep 2008 16:25:08 -0500, "Terry Coombs"
wrote:

Alright folks , I got the gear book (gotta brush up on my math !) ... and
I got some messed up gears on the lathe that need replacing . My research
indicates that the most flexible setup (though not the "best" for every
task) is a rotary table with indexing capability . My next decision is size
. My baby mill has a max of 18" table to spindle . The table is 9X32" and
moves 8X21" .
I'm thinking that 6" might be a bit too big , most of the gears are in the
2" to 5" diameter range ... but I don't want to limit myself to what may
come in the future . 3" is definitely too small , 4" is iffy , and I haven't
seen a 5 .
--
Snag
Decisions , decisions ...


Greetings Terry,
I have a 4, a 10, and a 12 inch rotary table. It seems that no matter
what I'm trying to machine it's something bigger than the table will
easily handle. So if you can get a 6 inch table that is low enough for
your mill that's the one to get. And make sure it's a
horizontal/vertical one. When you get your rotary table one thing
that's a BIG help is to make a longer handle for turning it. So you
will need to tap another hole in the existing handle wheel 180 degrees
from the existing hole. Then use a piece of bar stock to extend the
radius so that the handle is now at a 3 or 4 inch radius (or so).
Drill two holes to match the holes in the wheel and tap a hole to
match the handle you unscrewed from the wheel. Even though your hand
will now be travelling farther because you will be swinging it through
a larger radius the extra leverage makes it much easier to control any
movement of the table. And just like the gear reduction makes small
errors of indexing even smaller so does the extension handle.
Cheers,
Eric
  #7   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 879
Default Rotary table/indexer

Terry,

Perhaps you are approaching the problem the hard way. First check a place
that has stock gears. Often these can be had and then easily modified to
fit in most applications and the hard work is all done.


--

Roger Shoaf

About the time I had mastered getting the toothpaste back in the tube, then
they come up with this striped stuff.



"Terry Coombs" wrote in message
...
Steve Lusardi wrote:
Wrong answer. You need a proper dividing head and tail stock to
match. These come with chucks and are quite stiff. An indexing table
has no chuck. If the gears are helical or hypoid the dividing head
should be differential as well, but that also require a drive setup
from the table leadscrew to a gearcase with changeable gears. By your
description of your mill, it will not be capable of this. So all you
can make will be straight tooth gears.


Zackly !

You did not state whether your
mill is a horizontal or vertical, but the mill must be horizontal or
a vertical with a special horizontal drive, because the only cutters
that I know of that are available for the different tooth patterns
and pitch diameters come in 8 cutter sets for horizontal arbors.
Steve

It's a vertical tabletop model . I want to make my own cutters on the
lathe/mill, and cut straight cut gears to replace some with broken teeth

for
my Logan Lathe . There will be other tasks which require a rotating table

,
not necessarily indexed that closely . I'm looking for FLEXIBILITY in
addition to CAPABILITY . Most rotary tables also have a MT hole to mount
centers , and slots that can mount a chuck if needed . Widen your field of
view , Steve , you seem to have a case of tunnel vision .
--
Snag
'90 Ultra "Strider"
'39 WLDD "Popcycle"
Buncha cars and a truck




  #8   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 364
Default Rotary table/indexer

Roger Shoaf wrote:
Terry,

Perhaps you are approaching the problem the hard way. First check a
place that has stock gears. Often these can be had and then easily
modified to fit in most applications and the hard work is all done.



But that takes the "I did it on my machines." gloat away ! On the change
gears that would work , they are a "stock" gear . The back gears are another
story ...
Thanks for your input !

--
Snag
wannabe machinist


  #9   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 149
Default Rotary table/indexer

Yes, this is probably the most flexible setup. For my bridgeport, I
have an 8" Horizontal/vertical Phase II rotary table with a tailstock
and a set of dividing plates, and a homemade adapter to mount a 4-jaw
chuck on top. I also found a surplus 4" universal dividing head with
a 3-jaw chuck attached (beautiful thing) later on but I wouldn't have
bought one as a first choice new.

What you need to do is run the rotary table in vertical mode with the
tailstock, with the gear on an arbor in between centers. Depending on
the tool, you'll be running either a commercial multi-tooth form tool
in a slitting saw arbor, or a single point tool in a flycutter/boring
bar holder (which you'll probably have to make yourself). Set the
cutter on centerline vertically, set your depth of cut with your y-
axis dial, and use your x (longitudinal) feed to cut each tooth.
You'll probably need to take more than one pass, going all the way
around the gear each time.
  #10   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 3,146
Default Rotary table/indexer

On Sep 2, 9:10 am, woodworker88 wrote:

What you need to do is run the rotary table in vertical mode with the
tailstock, with the gear on an arbor in between centers.


Be sure the cutter forces the gear toward the larger end of the arbor.
If you use a live center and driving dog remove *all* play from the
dog.

Depending on
the tool, you'll be running either a commercial multi-tooth form tool
in a slitting saw arbor, or a single point tool in a flycutter/boring
bar holder (which you'll probably have to make yourself).


You can make the holder from a large bolt. Center-drill both ends,
turn the shank to fit a collet, then cut a slot across the head for
the bit and add clamping setscrews. A larger, fine-thread tap like
10-32 or 1/4-28 is less likely to break. Try to put the bit's cutting
edge radial so it will be easier to shape and regrind. The Grade 5
bolts I've used turned easily to a very good finish.

Set the cutter on centerline vertically,


Center it on the tailstock point, for instance.

set your depth of cut with your y-
axis dial, and use your x (longitudinal) feed to cut each tooth.
You'll probably need to take more than one pass, going all the way
around the gear each time.


You can cut one tooth slot almost to full depth for a short distance
to mark the tooth outline, then rough all the teeth out almost to that
outline with a Woodruff cutter. You have to feed a one-tooth gear
cutter slowly, especially on the finish pass to avoid rotation marks.

I needed a splined shaft to press into a motorcycle sprocket, with 13
teeth which my rotary table can't do, so I took a 52 tooth change gear
for the AA lathe, made an indexing stop to fit between the teeth, and
put it on the same shaft as the gear blank. I cut the slots slightly
undersized and pressed the sprocket on, and the thin chips the
sprocket shaved off looked even all around.

If you have a similar gear to copy, make a fixture that fits the
gear's center hole and guides the bit radially into a tooth groove.
Use it to fit the bit so no light shows between the bit and a tooth.
The one I made was an aluminum bar with a hole for the shaft on one
end and a 1/4" slot for the HSS bit on the other, milled at the same
table Y position to make the slot radial. The bit slides in the slot
with minimal side play.

You could soot the bit in a candle flame to find the contact spots you
need to grind down. I couldn't get bluing to work well enough on
smooth HSS. Mark the center of the bit so you can align it with the
tailstock point.

I used the unfinished bit for roughing the slots, alternately taking a
pass around the blank and grinding the bit to fit a little better.
That way it was always sharp. It was hard to grind both the tooth
curve and the back relief properly with a Dremel, so I gave it
excessive relief and it dulled quickly.

This description is a mix of two jobs, trapezoidal splines for the
motorcycle sprocket and involute splines for a hydraulic gear pump.
Both were press fits that carried several horsepower.

Jim Wilkins


  #11   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 364
Default Rotary table/indexer

Jim Wilkins wrote:
On Sep 2, 9:10 am, woodworker88 wrote:

What you need to do is run the rotary table in vertical mode with the
tailstock, with the gear on an arbor in between centers.


Be sure the cutter forces the gear toward the larger end of the arbor.
If you use a live center and driving dog remove *all* play from the
dog.

Depending on
the tool, you'll be running either a commercial multi-tooth form tool
in a slitting saw arbor, or a single point tool in a flycutter/boring
bar holder (which you'll probably have to make yourself).


You can make the holder from a large bolt. Center-drill both ends,
turn the shank to fit a collet, then cut a slot across the head for
the bit and add clamping setscrews. A larger, fine-thread tap like
10-32 or 1/4-28 is less likely to break. Try to put the bit's cutting
edge radial so it will be easier to shape and regrind. The Grade 5
bolts I've used turned easily to a very good finish.

Set the cutter on centerline vertically,


Center it on the tailstock point, for instance.

set your depth of cut with your y-
axis dial, and use your x (longitudinal) feed to cut each tooth.
You'll probably need to take more than one pass, going all the way
around the gear each time.


You can cut one tooth slot almost to full depth for a short distance
to mark the tooth outline, then rough all the teeth out almost to that
outline with a Woodruff cutter. You have to feed a one-tooth gear
cutter slowly, especially on the finish pass to avoid rotation marks.

I needed a splined shaft to press into a motorcycle sprocket, with 13
teeth which my rotary table can't do, so I took a 52 tooth change gear
for the AA lathe, made an indexing stop to fit between the teeth, and
put it on the same shaft as the gear blank. I cut the slots slightly
undersized and pressed the sprocket on, and the thin chips the
sprocket shaved off looked even all around.

If you have a similar gear to copy, make a fixture that fits the
gear's center hole and guides the bit radially into a tooth groove.
Use it to fit the bit so no light shows between the bit and a tooth.
The one I made was an aluminum bar with a hole for the shaft on one
end and a 1/4" slot for the HSS bit on the other, milled at the same
table Y position to make the slot radial. The bit slides in the slot
with minimal side play.

You could soot the bit in a candle flame to find the contact spots you
need to grind down. I couldn't get bluing to work well enough on
smooth HSS. Mark the center of the bit so you can align it with the
tailstock point.

I used the unfinished bit for roughing the slots, alternately taking a
pass around the blank and grinding the bit to fit a little better.
That way it was always sharp. It was hard to grind both the tooth
curve and the back relief properly with a Dremel, so I gave it
excessive relief and it dulled quickly.

This description is a mix of two jobs, trapezoidal splines for the
motorcycle sprocket and involute splines for a hydraulic gear pump.
Both were press fits that carried several horsepower.

Jim Wilkins


That's what I love about this place . Creative minds willing to share
their ideas . My appreciation to both of you , both have given me more food
for thought .
I plan on turning multi-tooth cutters (think shaped rings with teeth cut
into them) for the two DP's used on my lathe . The centered cutter cuts to
depth with straight sides , the cutters to either side of it shape the
flanks of the adjacent teeth . To do this I will need the table vertical ,
the gear blank on an arbor , supported by a tailstock . I like the idea of
using an existing gear as an index , but am concerned about my ability to do
it accurately . I will be using an arbor that has a 3/4 shank and a 1" dia
with a key slot on the cutter end .
I have made a flycutter , 12 deg angle at the bottom (back side of the bit
on CL , using AL4 brazed 1/4 by1/4 cutters) that works well , and my first
attempt at indexable end mills works , but I believe really needs
coolant/lube to work really well .
--
Snag
'90 Ultra "Strider"
'39 WLDD "Popcycle"
Buncha cars and a truck


  #12   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 3,146
Default Rotary table/indexer

On Sep 2, 5:46 pm, "Terry Coombs" wrote:
....
I plan on turning multi-tooth cutters (think shaped rings with teeth cut
into them) for the two DP's used on my lathe . The centered cutter cuts to
depth with straight sides , the cutters to either side of it shape the
flanks of the adjacent teeth .


Think "hob". I never made one because Boston Gear sells gears I could
bore out to fix my South Bend lathe. Hint: don't jam a screwdriver
into the gear train to lock it if the chuck is too tight. @#$%^ trade-
school kids.

A straight hob such as you described can cut perfect gears if you roll
the gear across it, the problem is to synchronize them.

I think the easier method uses a spiral tooth hob, like a worm gear,
but the blank is tilted so the hob cuts straight across it. The hob
turns the blank and automatically cuts the proper involute curve on
the teeth as they roll through the cutting edges. Descriptions of
hobbing on a horizontal milling machine suggest gearing the hob
spindle to the rotary index if possible. Rough the spaces out first.

The gotcha is threading the hob at the correct circular pitch to match
the existing gear.

I like the idea of
using an existing gear as an index , but am concerned about my ability to do
it accurately.


Me too. Before finding the 52 tooth gear the plan was to make a 13
hole ring for the rotary table.

I have made a flycutter , 12 deg angle at the bottom (back side of the bit
on CL , using AL4 brazed 1/4 by1/4 cutters) that works well , and my first
attempt at indexable end mills works , but I believe really needs
coolant/lube to work really well .


Lube yes, coolant no. I use it if the machine has it but at home just
brush on a little cutting or pipe threading oil. Speed is 80 - 100
FPM, less with home-made cutters that could break or fly off.

Jim Wilkins
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Rotary Table Suggestions Joe AutoDrill Metalworking 4 March 13th 08 07:28 PM
Rotary table Gerry Metalworking 4 February 25th 06 09:37 PM
rotary table use question Grant Erwin Metalworking 14 September 9th 05 05:18 AM
Rotary table ID? tokarev Metalworking 1 May 20th 04 12:57 AM
Rotary table help. Todd Rich Metalworking 1 October 6th 03 02:52 PM


All times are GMT +1. The time now is 03:34 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"