Metalworking (rec.crafts.metalworking) Discuss various aspects of working with metal, such as machining, welding, metal joining, screwing, casting, hardening/tempering, blacksmithing/forging, spinning and hammer work, sheet metal work.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 340
Default Data needed

I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers. Four of them would form a 7'
square in the center, the other four would form a larger square of about
15". I want to stand them on end. This is for a hot tub/observation
platform.

Where can I find the compression strength of that tubing? I'm sure this is
going to be way strong enough, as the spa is about 300 gallons. So, that's
a little under 3,000# for spa and water. There would be multiple bracing on
the posts, both to each other, on the horizontal and on the diagonal. I
believe a simple box with an X in the middle would give it sufficient
strength to keep any lateral movement to a minimum. 1/4" would be over
double the price, and overkill, IMHO.

Steve


  #2   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 88
Default Data needed

SteveB wrote:
I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers. Four of them would form a 7'
square in the center, the other four would form a larger square of about
15". I want to stand them on end. This is for a hot tub/observation
platform.

Where can I find the compression strength of that tubing? I'm sure this is
going to be way strong enough, as the spa is about 300 gallons. So, that's
a little under 3,000# for spa and water. There would be multiple bracing on
the posts, both to each other, on the horizontal and on the diagonal. I
believe a simple box with an X in the middle would give it sufficient
strength to keep any lateral movement to a minimum. 1/4" would be over
double the price, and overkill, IMHO.

Steve


Steel + hot tub = rust-- worry 'bout em rustin out , rather than collapsing
  #3   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 6,746
Default Data needed

SteveB wrote:

I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers. Four of them would form a 7'
square in the center, the other four would form a larger square of about
15". I want to stand them on end. This is for a hot tub/observation
platform.

Where can I find the compression strength of that tubing? I'm sure this is
going to be way strong enough, as the spa is about 300 gallons. So, that's
a little under 3,000# for spa and water. There would be multiple bracing on
the posts, both to each other, on the horizontal and on the diagonal. I
believe a simple box with an X in the middle would give it sufficient
strength to keep any lateral movement to a minimum. 1/4" would be over
double the price, and overkill, IMHO.

Steve


No expert here, and I'm having trouble visualizing your structure, but
in the couple references I have on hand, no structural steel column
specs are shown for anything under 3/16" wall thickness.
  #4   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 328
Default Data needed

SteveB wrote:
I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers. Four of them would form a 7'
square in the center, the other four would form a larger square of about
15". I want to stand them on end. This is for a hot tub/observation
platform.

Where can I find the compression strength of that tubing? I'm sure this is
going to be way strong enough, as the spa is about 300 gallons. So, that's
a little under 3,000# for spa and water. There would be multiple bracing on
the posts, both to each other, on the horizontal and on the diagonal. I
believe a simple box with an X in the middle would give it sufficient
strength to keep any lateral movement to a minimum. 1/4" would be over
double the price, and overkill, IMHO.

Steve



Have a look in Machinery's Handbook, Steve.

If you haven't bought your steel yet, I'd consider bumping it up to .180"
wall (3/16").

The issue won't be strength, it will be buckling and also corrosion. If it
were my design, I'd plan it to bolt together and take all the pieces to be
hot dip galvanized, and then build it with galvanized parts. But steel
columns fail by buckling, and the way to avoid buckling is by reinforcing
in your design.

GWE

--
Posted via a free Usenet account from http://www.teranews.com

  #5   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 762
Default Data needed

Pure compression strength of a tube shorter than Euler's formula
predicts is the cross sectional area times the compressive strength.
Using 55kpsi, any one post is way more than you need. For steel, Euler's
formula predicts failure by buckling for anything over length divided by
diameter ratio of 89 to 1. You are right near that.

So the answer is you do not have a vertical compression due to weight
problem. You have a lateral bracing and sway problem. Without looking at
the actual layout and sizing of all the members, I wouldn't even hazard
a guess what it would do.

I'd suggest that you should look at the classic cross country power
lines made with angle iron. They are designed to be built with mill
length (20' or 24') angle iron.

SteveB wrote:
I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers. Four of them would form a 7'
square in the center, the other four would form a larger square of about
15". I want to stand them on end. This is for a hot tub/observation
platform.

Where can I find the compression strength of that tubing? I'm sure this is
going to be way strong enough, as the spa is about 300 gallons. So, that's
a little under 3,000# for spa and water. There would be multiple bracing on
the posts, both to each other, on the horizontal and on the diagonal. I
believe a simple box with an X in the middle would give it sufficient
strength to keep any lateral movement to a minimum. 1/4" would be over
double the price, and overkill, IMHO.

Steve




  #6   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 129
Default Data needed


"SteveB" wrote in message
...
I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers. Four of them would form a 7'
square in the center, the other four would form a larger square of about
15". I want to stand them on end. This is for a hot tub/observation
platform.

Where can I find the compression strength of that tubing? I'm sure this
is going to be way strong enough, as the spa is about 300 gallons. So,
that's a little under 3,000# for spa and water. There would be multiple
bracing on the posts, both to each other, on the horizontal and on the
diagonal. I believe a simple box with an X in the middle would give it
sufficient strength to keep any lateral movement to a minimum. 1/4" would
be over double the price, and overkill, IMHO.

Steve


Better see if your local building code allows this.


-Carl


  #7   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 340
Default Data needed


"Carl Byrns" wrote in message
news:%U5dj.111996$eh4.25630@trnddc03...

"SteveB" wrote in message
...
I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers. Four of them would form a 7'
square in the center, the other four would form a larger square of about
15". I want to stand them on end. This is for a hot tub/observation
platform.

Where can I find the compression strength of that tubing? I'm sure this
is going to be way strong enough, as the spa is about 300 gallons. So,
that's a little under 3,000# for spa and water. There would be multiple
bracing on the posts, both to each other, on the horizontal and on the
diagonal. I believe a simple box with an X in the middle would give it
sufficient strength to keep any lateral movement to a minimum. 1/4"
would be over double the price, and overkill, IMHO.

Steve


Better see if your local building code allows this.
-Carl


We have the following local policy on sheds and outbuildings that are not
insulated, electrified, or are built on weekends:







Steve


  #8   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 169
Default Data needed

On Dec 28, 11:57 am, "SteveB" wrote:
"Carl Byrns" wrote in message

news:%U5dj.111996$eh4.25630@trnddc03...





"SteveB" wrote in message
...
I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers. Four of them would form a 7'
square in the center, the other four would form a larger square of about
15". I want to stand them on end. This is for a hot tub/observation
platform.


Where can I find the compression strength of that tubing? I'm sure this
is going to be way strong enough, as the spa is about 300 gallons. So,
that's a little under 3,000# for spa and water. There would be multiple
bracing on the posts, both to each other, on the horizontal and on the
diagonal. I believe a simple box with an X in the middle would give it
sufficient strength to keep any lateral movement to a minimum. 1/4"
would be over double the price, and overkill, IMHO.


Steve


Better see if your local building code allows this.
-Carl


We have the following local policy on sheds and outbuildings that are not
insulated, electrified, or are built on weekends:

Steve



Steve,

3000 lbs + 6 burly friends + beer :-)), 20 feet up in the air,
requires engineering.

Is your area prone to storms, ice build-up, earthquakes, etc.? Then
you would have to consider that, also. What are soil conditions
like? Sand, mud, bed rock? Will this tower be free-standing or be
attached to an existing structure?

I take it that the four outer posts are to support a surrounding
deck? If so, consider a design with four posts only: say 4" x 4" x ?
or 6" x 6" x ?. ( My GUESS is that it would take 6" x 6" x ?? for
this app.) These four posts would support the tub AND a cantilevered
deck. Don't forget the safety railing!!

While column buckling failure is ONE consideration, other modes of
failure are torsional collapse (the tower twists during collapse), and
tower shear failure (the structure moves sideways during collapse,
legs "hinging" at the base). Both of these modes of failure are
resisted by shear (diagonal) bracing.

Buckling failure is wrapped up in the formula Kl/r (slenderness
ratio) where "K" is a factor depending on the column end conditions,
"l" is the UNBRACED length of the column, and "r" is the section's
radius of gyration. Most structural design handbooks have listings of
Kl/r ranging from a low of 20 to a high of 200 with a corresponding
allowable compressive stress in the steel, which varies only a little
with the yield strength of the steel.

In my jurisdiction (Ontario, Canada) such a structure would require
stamped and certified drawings by a licensed Professional Engineer to
get it past the city building department.

A year or so ago a fellow called me because he wanted to put a hot tub
on an extension to an existing deck. The city building department
told him it would have to be "engineered" with stamp and signature of
P.Eng. on the dwgs. He nearly choked when I explained to him what he
was in for. And his deck was only 3' or 4' off the ground!

Let us know what you decide to do!

Wolfgang
  #9   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 1,224
Default Data needed

On Thu, 27 Dec 2007 19:29:00 -0800, "SteveB"
wrote:

I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers.

NO! Use base plates and anchor bolts.
Gerry :-)}
London, Canada
  #10   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 558
Default Data needed

On Fri, 28 Dec 2007 21:47:57 -0500, Gerald Miller
wrote:
On Thu, 27 Dec 2007 19:29:00 -0800, "SteveB"
wrote:


I want to put up eight three inch square by .120" thick posts twenty feet
long, about two foot into concrete piers.


NO! Use base plates and anchor bolts.


Put footers with galvanized J-bolts and baseplates - Rust Happens.
Baseplates and bolts means it's repairable, even if you have to set up
temporary columns and jacks to take the load while you rebuild it.

If you sink the posts straight into the concrete, you can't see
internal rust happening, almost up to the point where it fails
catastrophically and drops the entire deck, hot tub and all. You
might get a short warning if you inspect it often and spot a rust
perforation through the side of the tubing, but do NOT count on it.

I change out rusted through light standards weekly - the bolt-base
ones are easy, take out the old hole and put in the new.

The direct burial ones are a Pain In The Ass, you have to get out
the jackhammer and carefully take apart the old concrete footing to
get it out and pour the new one. Inevitably they have three or four
power conduits homing on the old pole base, so you can't just rip it
out with a tractor.

-- Bruce --



  #11   Report Post  
Posted to rec.crafts.metalworking
* * is offline
external usenet poster
 
Posts: 222
Default Data needed



SteveB wrote in article
...
This is for a hot tub/observation
platform.


Isn't that just a bit kinky?......building a platform just to observe
what's going on in a hot tub?

  #12   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 169
Default Data needed

On Dec 29, 8:33 am, "*" wrote:
SteveB wrote in article
...

This is for a hot tub/observation
platform.


Isn't that just a bit kinky?......building a platform just to observe
what's going on in a hot tub?





Steve,

An earlier poster suggested copying the base of a high-voltage
transmission tower.... This is a good idea provided that you keep the
same taper and bracing. The base you can adjust to suit the platform
size on top.

Pouring concrete footings with anchor bolts is also an excellent idea
for all the reasons stated above. It also allows small adjustments to
be made in the verticality of the tower.

Perhaps there is a fire tower in your area you could copy if there are
no high-voltage transmission lines.

Angle iron is much cheaper than hollow structural section (HSS), and
you could bolt things together with structural Grade 5 bolts.

I think is a very doable project and I hope you post some photos with
bathing beauties no less!

Wolfgang
  #13   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 12
Default Data needed

On Sat, 29 Dec 2007 17:51:30 -0700, "SteveB"
wrote:


wrote in message
...
On Dec 29, 8:33 am, "*" wrote:
SteveB wrote in article
...

This is for a hot tub/observation
platform.

Isn't that just a bit kinky?......building a platform just to observe
what's going on in a hot tub?





Steve,

An earlier poster suggested copying the base of a high-voltage
transmission tower.... This is a good idea provided that you keep the
same taper and bracing. The base you can adjust to suit the platform
size on top.

Pouring concrete footings with anchor bolts is also an excellent idea
for all the reasons stated above. It also allows small adjustments to
be made in the verticality of the tower.

Perhaps there is a fire tower in your area you could copy if there are
no high-voltage transmission lines.

Angle iron is much cheaper than hollow structural section (HSS), and
you could bolt things together with structural Grade 5 bolts.

I think is a very doable project and I hope you post some photos with
bathing beauties no less!

Wolfgang


I have always had a fascination with observation towers, and perhaps the
earliest ones I was ever on (I'm 60) were either fire observation towers or
high power towers converted. My dad used to take us everywhere on summer
vacation. He made it his duty in life to visit every snake pit an small
town museum known to man. Good for us! Hooey, in most places kids were
free. (We realized later the old man was just cheap, and didn't give a hoot
of us getting a good education...... not really)

Fast forward about twenty years. I worked on a rig building crew in the
Gulf of Mexico. I did it two years, and realized that I was not a rig
builder. On that TV show, one of the Poole brothers I worked with is still
doing it, but now he's a hoist operator and doesn't climb.

The standard derrick in those days was a Lee C. Moore 147. 147' with
everything on it. Capable of lifting right at one million pounds. Today,
that's spaghetti compared to these big topdrive rigs.

I still see a few of the Lee C Moore's around. There were two right here in
Las Vegas. One is left, very near downtown Freemont Street. Ogden and
Tenth approximately. I'd like to steal that one, but don't know who owns
it, and couldn't afford it right now.

I could get one fabbed out of Houston, just up to the top of the Vee door,
or maybe one leg higher. For them, it would be a slam dunk. Prepunched and
hot galvanized dip, guaranteed to survive even in the Gulf of Mexico. But
we're talking lots of bucks and those morons at Lotto still can't get the
numbers right.

But yes, I will keep my eye out for a tower of that style. I want one for
the cabin, too, but not for a hot tub. There's below zero weather there in
the winter, and freezing about seven months otherwise. There's a new Rocky
Mountain Power yard that opened just down the freeway and they're already
stocking broken poles in there, I assume from car crashes. Guys I know have
bought them pretty cheap. Maybe they have crashed metal towers, too.

Poles are harder to work with than the Erector set towers as to connecting.
With the towers, if you get those first legs right, the rest goes up pretty
easy and quick with knowledgeable help. All you need is a decent capstan.
We used to use the one on the end of the drawworks. And a four strand 1"
manila line.

I was thinking of square tube, as it is readily available, and easy to work
with. Will look around on the tower idea, though.

Thanks

Steve

Still a few steel derricks here in the oil patch. Most have been
salvaged, but a few are still up, and available.

Gunner
  #14   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 346
Default Data needed


wrote in message
...
On Dec 29, 8:33 am, "*" wrote:
SteveB wrote in article
...

This is for a hot tub/observation
platform.


Isn't that just a bit kinky?......building a platform just to observe
what's going on in a hot tub?





Steve,

An earlier poster suggested copying the base of a high-voltage
transmission tower.... This is a good idea provided that you keep the
same taper and bracing. The base you can adjust to suit the platform
size on top.

Pouring concrete footings with anchor bolts is also an excellent idea
for all the reasons stated above. It also allows small adjustments to
be made in the verticality of the tower.

Perhaps there is a fire tower in your area you could copy if there are
no high-voltage transmission lines.

Angle iron is much cheaper than hollow structural section (HSS), and
you could bolt things together with structural Grade 5 bolts.

I think is a very doable project and I hope you post some photos with
bathing beauties no less!

Wolfgang


I have always had a fascination with observation towers, and perhaps the
earliest ones I was ever on (I'm 60) were either fire observation towers or
high power towers converted. My dad used to take us everywhere on summer
vacation. He made it his duty in life to visit every snake pit an small
town museum known to man. Good for us! Hooey, in most places kids were
free. (We realized later the old man was just cheap, and didn't give a hoot
of us getting a good education...... not really)

Fast forward about twenty years. I worked on a rig building crew in the
Gulf of Mexico. I did it two years, and realized that I was not a rig
builder. On that TV show, one of the Poole brothers I worked with is still
doing it, but now he's a hoist operator and doesn't climb.

The standard derrick in those days was a Lee C. Moore 147. 147' with
everything on it. Capable of lifting right at one million pounds. Today,
that's spaghetti compared to these big topdrive rigs.

I still see a few of the Lee C Moore's around. There were two right here in
Las Vegas. One is left, very near downtown Freemont Street. Ogden and
Tenth approximately. I'd like to steal that one, but don't know who owns
it, and couldn't afford it right now.

I could get one fabbed out of Houston, just up to the top of the Vee door,
or maybe one leg higher. For them, it would be a slam dunk. Prepunched and
hot galvanized dip, guaranteed to survive even in the Gulf of Mexico. But
we're talking lots of bucks and those morons at Lotto still can't get the
numbers right.

But yes, I will keep my eye out for a tower of that style. I want one for
the cabin, too, but not for a hot tub. There's below zero weather there in
the winter, and freezing about seven months otherwise. There's a new Rocky
Mountain Power yard that opened just down the freeway and they're already
stocking broken poles in there, I assume from car crashes. Guys I know have
bought them pretty cheap. Maybe they have crashed metal towers, too.

Poles are harder to work with than the Erector set towers as to connecting.
With the towers, if you get those first legs right, the rest goes up pretty
easy and quick with knowledgeable help. All you need is a decent capstan.
We used to use the one on the end of the drawworks. And a four strand 1"
manila line.

I was thinking of square tube, as it is readily available, and easy to work
with. Will look around on the tower idea, though.

Thanks

Steve


Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Scientific Software : Data Acquisition, Weather Data Scott Home Ownership 0 July 26th 07 12:16 PM
Scientific Software : Data Acquisition, Weather Data Scott Home Repair 0 July 26th 07 12:14 PM
Data Sheet needed - upc2581D [email protected] Electronics Repair 1 October 31st 05 08:37 AM
Serial data device needed Thomas Abell Electronics Repair 3 April 7th 05 10:46 PM
Data sheets needed prolater Electronics Repair 2 March 16th 05 12:03 AM


All times are GMT +1. The time now is 11:52 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"