Home Repair (alt.home.repair) For all homeowners and DIYers with many experienced tradesmen. Solve your toughest home fix-it problems.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 1,567
Default another irrigation pump question

Thanks for the pointers on the last one. Much appreciated. I had no
idea there were suction limits. I have not talked to the corp yet but
I have heard via others that they do issue permits for personal
irrigation usage. And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. The
pump can remain on my property and I can easily supply electrical
power. Running power to the lake is out of the question because o
fthe flood issues. The corp is very restrictive about that. I just
have to run water lines down to the jet foot in the lake. That's the
part I'm investigating now.

I'd like something cheap and easily taken up or moved if needed. I
see that normally some pretty large pipe is used for a home jet pump.
And it's not cheap. But I also only need to accomplish 30 psi at
about 2 gpm. I'm wondering if I can get away with 1 inch poly for the
main pipe and 1/2 inch poly for the jet supply? Any thoughts? Again
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)
  #2   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 119
Default another irrigation pump question

On Jul 24, 11:05 am, jamesgangnc wrote:
Thanks for the pointers on the last one. Much appreciated. I had no
idea there were suction limits. I have not talked to the corp yet but
I have heard via others that they do issue permits for personal
irrigation usage. And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. The
pump can remain on my property and I can easily supply electrical
power. Running power to the lake is out of the question because o
fthe flood issues. The corp is very restrictive about that. I just
have to run water lines down to the jet foot in the lake. That's the
part I'm investigating now.

I'd like something cheap and easily taken up or moved if needed. I
see that normally some pretty large pipe is used for a home jet pump.
And it's not cheap. But I also only need to accomplish 30 psi at
about 2 gpm. I'm wondering if I can get away with 1 inch poly for the
main pipe and 1/2 inch poly for the jet supply? Any thoughts? Again
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


Andy comments:
I live on a lake which allows residents to use lake water for
irrigation purposes. A permit costing $100 is required, and if any
electrical service is taken onto the lake easement, it must also
have a permit and be inspeccted.
For that reason, I located the pump above the lake easement,
which is about half way to the house and ran electric out to
the pump......
Typcally, my pump is about 5 feet above the lake level and
five feet below the house level. I use 1 inch PVC pipe as both input
and
output, and a foot valve at the lake end of the input pipe. The pump
is from Harbor Freight and costs around $33, and will pump about
5 gallons a minute. www.harborfreight.com

This works well for me. I just use water for the garden an for
the lawn and have laid out my irrigation so that the pump capacity
will supply one zone at a time, rather than the whole shebang
at once. Perhaps this idea will help you...


Andy in Eureka, Texas
  #3   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 8,803
Default another irrigation pump question

jamesgangnc wrote:
Thanks for the pointers on the last one. Much appreciated. I had no
idea there were suction limits. I have not talked to the corp yet but
I have heard via others that they do issue permits for personal
irrigation usage. And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. The
pump can remain on my property and I can easily supply electrical
power. Running power to the lake is out of the question because o
fthe flood issues. The corp is very restrictive about that. I just
have to run water lines down to the jet foot in the lake. That's the
part I'm investigating now.

I'd like something cheap and easily taken up or moved if needed. I
see that normally some pretty large pipe is used for a home jet pump.
And it's not cheap. But I also only need to accomplish 30 psi at
about 2 gpm. I'm wondering if I can get away with 1 inch poly for the
main pipe and 1/2 inch poly for the jet supply? Any thoughts? Again
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


My guess is that you'd need at least 3/4". In reality, you need to check with
the manufacturer of the pump you select. They should be able to relate distance,
rise, etc. to the need for different size pipes at particular pressure and gpm
output.



  #4   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 1,567
Default another irrigation pump question

On Jul 24, 5:48*pm, Andy wrote:
On Jul 24, 11:05 am, jamesgangnc wrote:





Thanks for the pointers on the last one. *Much appreciated. *I had no
idea there were suction limits. *I have not talked to the corp yet but
I have heard via others that they do issue permits for personal
irrigation usage. *And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. *The
pump can remain on my property and I can easily supply electrical
power. *Running power to the lake is out of the question because o
fthe flood issues. *The corp is very restrictive about that. *I just
have to run water lines down to the jet foot in the lake. *That's the
part I'm investigating now.


I'd like something cheap and easily taken up or moved if needed. *I
see that normally some pretty large pipe is used for a home jet pump.
And it's not cheap. *But I also only need to accomplish 30 psi at
about 2 gpm. *I'm wondering if I can get away with 1 inch poly for the
main pipe and 1/2 inch poly for the jet supply? *Any thoughts? *Again
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


Andy comments:
* * I live on a lake which allows residents to use lake water for
irrigation purposes. A permit costing $100 is required, and if any
electrical service is taken onto the lake easement, it must also
have a permit and be inspeccted.
* * *For that reason, I located the pump above the lake easement,
which is about half way to the house and ran electric out to
the pump......
* * *Typcally, my pump is about 5 feet above the lake level and
five feet below the house level. *I use 1 inch PVC pipe as both input
and
output, and a foot valve at the lake end of the input pipe. *The pump
is from Harbor Freight and costs around $33, and will pump about
5 gallons a minute. * *www.harborfreight.com

* * This works well for me. *I just use water for the garden an for
the lawn and have laid out my irrigation so that the pump capacity
will supply one zone at a time, rather than the whole shebang
at once. * Perhaps this idea will help you...

* * * * * * * * *Andy in Eureka, Texas- Hide quoted text -

- Show quoted text -


Thanks. That's along the lines of what I'd like to do. My issue is
that our lake, Kerr, is a flood control lake. Any electrical must be
on poles 20' above normal pool. Way too costly for my project. My
house is about 25' to 30' above normal pool. Because of the
electrical restrictions I need to locate the pump at my house and draw
the water up the whole distance. I think that means I need to go a
little more $ on the pump. But I've seen a number of 1/2hp ones in
the $100 to $150 range. My only other cost is the water line so I'm
trying to limit that too. I'm trying to run a drip system that has
about 100 1gph drippers per segment so I don't need much.
  #5   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 1,567
Default another irrigation pump question

On Jul 24, 8:47*pm, "Bob F" wrote:
jamesgangnc wrote:
Thanks for the pointers on the last one. *Much appreciated. *I had no
idea there were suction limits. *I have not talked to the corp yet but
I have heard via others that they do issue permits for personal
irrigation usage. *And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. *The
pump can remain on my property and I can easily supply electrical
power. *Running power to the lake is out of the question because o
fthe flood issues. *The corp is very restrictive about that. *I just
have to run water lines down to the jet foot in the lake. *That's the
part I'm investigating now.


I'd like something cheap and easily taken up or moved if needed. *I
see that normally some pretty large pipe is used for a home jet pump.
And it's not cheap. *But I also only need to accomplish 30 psi at
about 2 gpm. *I'm wondering if I can get away with 1 inch poly for the
main pipe and 1/2 inch poly for the jet supply? *Any thoughts? *Again
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


My guess is that you'd need at least 3/4". In reality, you need to check with
the manufacturer of the pump you select. They should be able to relate distance,
rise, etc. to the need for different size pipes at particular pressure and gpm
output.- Hide quoted text -

- Show quoted text -




  #6   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 1,567
Default another irrigation pump question

On Jul 24, 8:47*pm, "Bob F" wrote:
jamesgangnc wrote:
Thanks for the pointers on the last one. *Much appreciated. *I had no
idea there were suction limits. *I have not talked to the corp yet but
I have heard via others that they do issue permits for personal
irrigation usage. *And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. *The
pump can remain on my property and I can easily supply electrical
power. *Running power to the lake is out of the question because o
fthe flood issues. *The corp is very restrictive about that. *I just
have to run water lines down to the jet foot in the lake. *That's the
part I'm investigating now.


I'd like something cheap and easily taken up or moved if needed. *I
see that normally some pretty large pipe is used for a home jet pump.
And it's not cheap. *But I also only need to accomplish 30 psi at
about 2 gpm. *I'm wondering if I can get away with 1 inch poly for the
main pipe and 1/2 inch poly for the jet supply? *Any thoughts? *Again
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


My guess is that you'd need at least 3/4". In reality, you need to check with
the manufacturer of the pump you select. They should be able to relate distance,
rise, etc. to the need for different size pipes at particular pressure and gpm
output.- Hide quoted text -

- Show quoted text -


Thanks, that's helpful. I can still use poly 3/4. I have not been
able to find poly larger than 1". The poly is pretty cheap but most
other options are not.
  #7   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 5,040
Default another irrigation pump question

In article
,
jamesgangnc wrote:


I'm trying to run a drip system that has
about 100 1gph drippers per segment so I don't need much.


Nevertheless, I think you're going to run into legal trouble. You seem
pretty cavalier about that. The "I didn't steal very much" defense is
somewhat weak. I'm not making any moral judgment, and if you want to
take the water, I won't be chastising you for it. But you may want to
consider that aspect before you engineer the project.

In this document:

http://epec.saw.usace.army.mil/KERRWCP.TXT

I don't see a provision in the "water supply" section for you to use
lake water for your irrigation project:

E. OPERATION FOR WATER SUPPLY

In accordance with the provisions of the Water Supply Act of 1958,
Public Law 85-500, the Government is authorized to include storage in
any reservoir project constructed by the Corps of Engineers to impound
water for municipal or industrial water use. The following water
supply contracts authorizing water storage space in John H. Kerr
Reservoir are in effect.

a. The City of Clarksville, Virginia is allowed to make water
supply withdrawals from Kerr Reservoir at no cost in accordance with
preproject agreements.

b. A water use contract between the Federal Government and
the City of Henderson, North Carolina, was entered into on February
12, 1974. The City of Henderson can withdraw water from Kerr
Reservoir at a rate not to exceed 20 million gallons per day (MGD).
Plans are in progress to convert this contract to a storage contract
in the near future.

c. A water storage supply contract with the City of Virginia
Beach, Virginia, for withdrawals of water from John H. Kerr Reservoir
was signed on 13 January 1984. However, no water supply withdrawals
have been made by the City due to a delay in water supply pipeline
construction brought about by legal action. After seven years of
study and litigation, the U.S. District judge on 2 February 1990
upheld the Corps of Engineers decision to issue a permit and a water
supply contract for withdrawal of water from Lake Gaston, located
downstream of the John H. Kerr Dam, for the City of Virginia Beach.
Ultimately, the State of North Carolina and the Roanoke River Basin
Association appealed the judge's decision to the U.S. Supreme Court.
On 24 February 1992, the Supreme Court upheld the ruling made by the
4th U.S. Circuit Court of Appeals in Richmond. The City of Virginia
Beach issued contracts to begin the first phase of pipeline
construction. Pipeline construction began but is currently delayed by
legal action. FERC issued a notice of intent to prepare an
environmental impact statement on 1 July 1994. This action has
created an indefinite delay in the issuance of the final permit
necessary to complete pipeline construction. The City of Virginia
Beach has the right to utilize 1.066 percent of the usable storage
space in John H. Kerr Reservoir between elevations 268 and 300 feet,
m.s.l., or approximately 10,200 acre-feet of the conservation storage
in Kerr Reservoir.

d. On January 25, 1989, a water storage contract was entered
into between the Corps of Engineers and the Virginia Department of
Corrections (VADOC) for water supply storage space in John H. Kerr
Reservoir. VADOC has the right to utilize an undivided 0.0024 percent
of the conservation (power) storage from elevation 268 to 300 feet,
m.s.l., in Kerr Reservoir or approximately 23 acre-feet. The
specified withdrawal rate is not to exceed 60,000 gallons per day.
The water supply pipeline has not yet been constructed.

e. On 5 June 1991, a water storage contract with the
Mecklenburg Cogeneration Limited Partnership (MCLP) was signed. The
120 megawatt coal-fired cogeneration facility at Clarksville,
Virginia, uses raw water from John H. Kerr Reservoir as process water,
cooling water, and steam supply for the facility. MCLP has the right
to utilize an undivided 0.063 percent (approximately 600 acre-feet) of
the conservation storage in Kerr Reservoir.
  #8   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 1,567
Default another irrigation pump question

On Jul 25, 4:31*am, Smitty Two wrote:
In article
,

*jamesgangnc wrote:
*I'm trying to run a drip system that has
about 100 1gph drippers per segment so I don't need much.


Nevertheless, I think you're going to run into legal trouble. You seem
pretty cavalier about that. The "I didn't steal very much" defense is
somewhat weak. I'm not making any moral judgment, and if you want to
take the water, I won't be chastising you for it. But you may want to
consider that aspect before you engineer the project.


I've talked to some of the neighbors who believe it is allowed. I
still need to call over there and ask what the deal is. Some things
you have to get a permit for and some things they just "approve" in
writing. And some things you can just do. I'm hoping it's one of the
later since they often come up with fees for the permits. Most of
what you find online discusses large scale usage. A foot acre is a
bunch of water. The corp is not very web present. I'm not planning
on buying materials until I find out the rules. But that may prove
painful since it's a bureaucracy. I'm trying to figure out if there
is an economical solution to the engineering before I tackle the
permission side. If there's not a moderately priced solution then
I'll avoid that pain.

I've seen numerous sources for 1/2hp jet pumps in the $100 to $150
range. Amazon, ebay, etc. I expect they are somewhat cheaply made at
that price but I'm thinking I'll be running it for a hour or so every
couple days so cheap may be acceptable. I can accomidate a low flow
rate since this is drip. The jet foot seems to be $30 to $50. The
last piece of the puzzle is pipe. It's a long way. I'm guestimating
250 feet or so just based on looking at it and comparing it to a
football field. Obviously I'll have to measure before I buy pipe if
this turns out to be practical. Irrigation poly pipe seems to be the
cheapest for long lengths. It is good up to 60psi which I think is ok
for my application. But 1" seems to be the biggest size commonly
found.

I've got no experience in the well or water pumping business so I came
here to get some thoughts on my plan.

  #9   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 8,803
Default another irrigation pump question

jamesgangnc wrote:
On Jul 24, 8:47 pm, "Bob F" wrote:
jamesgangnc wrote:
Thanks for the pointers on the last one. Much appreciated. I had no
idea there were suction limits. I have not talked to the corp yet
but I have heard via others that they do issue permits for personal
irrigation usage. And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. The
pump can remain on my property and I can easily supply electrical
power. Running power to the lake is out of the question because o
fthe flood issues. The corp is very restrictive about that. I just
have to run water lines down to the jet foot in the lake. That's the
part I'm investigating now.


I'd like something cheap and easily taken up or moved if needed. I
see that normally some pretty large pipe is used for a home jet
pump. And it's not cheap. But I also only need to accomplish 30 psi
at about 2 gpm. I'm wondering if I can get away with 1 inch poly
for the main pipe and 1/2 inch poly for the jet supply? Any
thoughts? Again the lake is about 250' away with a 25 to 30' rise
to the house. Thanks to all :-)


My guess is that you'd need at least 3/4". In reality, you need to
check with the manufacturer of the pump you select. They should be
able to relate distance, rise, etc. to the need for different size
pipes at particular pressure and gpm output.- Hide quoted text -

- Show quoted text -


Thanks, that's helpful. I can still use poly 3/4. I have not been
able to find poly larger than 1". The poly is pretty cheap but most
other options are not.


Poly larger than 1" is certainly available, but maybe not at the Home Depot type
of places. Not that you should need it for your low volume use.


  #10   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 16
Default another irrigation pump question


"Bob F" wrote in message ...
jamesgangnc wrote:
On Jul 24, 8:47 pm, "Bob F" wrote:
jamesgangnc wrote:
Thanks for the pointers on the last one. Much appreciated. I had no
idea there were suction limits. I have not talked to the corp yet
but I have heard via others that they do issue permits for personal
irrigation usage. And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. The
pump can remain on my property and I can easily supply electrical
power. Running power to the lake is out of the question because o
fthe flood issues. The corp is very restrictive about that. I just
have to run water lines down to the jet foot in the lake. That's the
part I'm investigating now.

I'd like something cheap and easily taken up or moved if needed. I
see that normally some pretty large pipe is used for a home jet
pump. And it's not cheap. But I also only need to accomplish 30 psi
at about 2 gpm. I'm wondering if I can get away with 1 inch poly
for the main pipe and 1/2 inch poly for the jet supply? Any
thoughts? Again the lake is about 250' away with a 25 to 30' rise
to the house. Thanks to all :-)

My guess is that you'd need at least 3/4". In reality, you need to
check with the manufacturer of the pump you select. They should be
able to relate distance, rise, etc. to the need for different size
pipes at particular pressure and gpm output.- Hide quoted text -

- Show quoted text -


Thanks, that's helpful. I can still use poly 3/4. I have not been
able to find poly larger than 1". The poly is pretty cheap but most
other options are not.


Poly larger than 1" is certainly available, but maybe not at the Home Depot type
of places. Not that you should need it for your low volume use.



I'd get a Convertible pump with a Shallow Well Ejector
And try it with one pipe first 25' to 30' rise should work
is it 25'-30' over a 250' area try it before the two pipe
If not can you can still use the same pump
I'm doing 150' with a 10'-15' rise and can do 3 sprinklers full on
Did my neighbors when their sprinkler pump quit with no rise seemed the same as a
10'-15' rise over a 100' since its not straight up most pumps will do 25'
Are you close to sea level
I've done both Pump at lake and at house both have their problems
I'm doing at lake with 1" poly for intake 20" from water edge and a 1" garden hose 100'
to the tees for the regular garden hose intake of pump is 1-1/4 output is 1"
just used a reducer to 1" poly fitting The larger pipe your talking about is the well casing
not need here
You are going to need a lake screen the one I got goes right on the check valve
Then something to hold it down but off the bottom
The pessure switch is right on the pump but with 3 sprinklers on runs full time
with drip I think you'll need a pressure tank or will have Short cycling
Also a Pressure relief valve would be a good idea if its going to run with you not right there
I also ran a 1" Galvanized Pipe straight up from the pump about 3' with 2 faucets and a cap on top to prime
also a garden hose holder u bolted to it
The pump is bolted to a large board was going to stake to the ground but not needed
stable enough with the board and a cement block sitting on the board even when pulling the hose
The 1" poly pipe out front seems to hold it in place




  #11   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 68
Default another irrigation pump question

jamesgangnc wrote in news:e2726069-c968-4f1a-
:

Thanks for the pointers on the last one. Much appreciated. I had no
idea there were suction limits. I have not talked to the corp yet but
I have heard via others that they do issue permits for personal
irrigation usage. And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. The
pump can remain on my property and I can easily supply electrical
power. Running power to the lake is out of the question because o
fthe flood issues. The corp is very restrictive about that. I just
have to run water lines down to the jet foot in the lake. That's the
part I'm investigating now.

I'd like something cheap and easily taken up or moved if needed. I
see that normally some pretty large pipe is used for a home jet pump.
And it's not cheap. But I also only need to accomplish 30 psi at
about 2 gpm. I'm wondering if I can get away with 1 inch poly for the
main pipe and 1/2 inch poly for the jet supply? Any thoughts? Again
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


Are you sure of the 2 gpm rate? Seems a bit low to me but if all you need
is 2 gpm then you could use 3/4" for the main pipe and 1/2 inch for the
jet supply. Smaller pipe is easier to prime so don't over-size it. Get a
good foot valve to make priming as easy as possible and hopefully one
priming will last a long time. Priming and keeping prime is the main
disadvantage of long pipe runs from the source.

For your 2 gpm you need a pump that will supply 2 gpm at 102 feet of
head - 3 ft friction losses, 69 ft for the 30 psi pressure and 30 ft for
the static lift. The equation for horsepower is hp = (gpm x head in
feet)/ (3960 x efficiency) where efficiency for these pumps can be as low
as 60% (0.60). That is only 0.09 hp for your 2 gpm need. You can use the
smallest pump you can find that will make 102 ft of head at 2 gpm and
that may be hard to find as small pumps usually don't make that much
head.

I did the calculation for 5 gpm and get 22 feet of friction loss in a 3/4
inch pipe. That means a hp of (5gpm x 121 ft)/(3960 x 0.6) = 0.255 hp. So
a 1/4 hp pump would supply a lot more than you need and that size is easy
to find but again the head rating is important.

There is no problem with an over-size pump, in this case. The pump only
draws as much power as it needs for the amount of water being pumped so
even a 1/2 hp pump wouldn't waste much electricity. Running a pump lower
than it's best range makes it operate in a less efficient range but that
might be 50% instead of 60%. It wouldn't harm the pump physically because
2 gpm is enough to lube and cool. So, if you can only find the pressure
requirement in a 1/2 hp pump and the price is right that is OK. Check the
shut-off head (head at zero flow) to make sure that your pipe can handle
that pressure. In the 1/2 hp range there are many pumps that make a lot
of pressure so be careful of that.

Also, use a pressure tank and probably a 30/50 switch - starts pump when
pressure falls below 30 psi and stops pump when pressure reaches 50 psi.
You divide psi by 0.433 to get feet of head. The pump's shut-off head
must be higher than the higher number of the switch or it won't make
enough pressure to cause the switch to turn off. These switches are
usually adjustable with a screwdriver so you can likely get a setting
that will work with your pump - just turn all the taps off so flow is
zero and if pump turns off at 50 psi, great. If it keeps running adjust
the shut-off screw until pump stops and then turn screw a bit more.
  #12   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 1,567
Default another irrigation pump question

On Jul 25, 7:31*pm, Reno wrote:
jamesgangnc wrote in news:e2726069-c968-4f1a-
:





Thanks for the pointers on the last one. *Much appreciated. *I had no
idea there were suction limits. *I have not talked to the corp yet but
I have heard via others that they do issue permits for personal
irrigation usage. *And from the response to my last post I'm thinking
the only practical solution for me is a shallow well jet pump. *The
pump can remain on my property and I can easily supply electrical
power. *Running power to the lake is out of the question because o
fthe flood issues. *The corp is very restrictive about that. *I just
have to run water lines down to the jet foot in the lake. *That's the
part I'm investigating now.


I'd like something cheap and easily taken up or moved if needed. *I
see that normally some pretty large pipe is used for a home jet pump.
And it's not cheap. *But I also only need to accomplish 30 psi at
about 2 gpm. *I'm wondering if I can get away with 1 inch poly for the
main pipe and 1/2 inch poly for the jet supply? *Any thoughts? *Again
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


Are you sure of the 2 gpm rate? Seems a bit low to me but if all you need
is 2 gpm then you could use 3/4" for the main pipe and 1/2 inch for the
jet supply. Smaller pipe is easier to prime so don't over-size it. Get a
good foot valve to make priming as easy as possible and hopefully one
priming will last a long time. Priming and keeping prime is the main
disadvantage of long pipe runs from the source.

For your 2 gpm *you need a pump that will supply 2 gpm at 102 feet of
head - 3 ft friction losses, 69 ft for the 30 psi pressure and 30 ft for
the static lift. The equation for horsepower is *hp = (gpm x head in
feet)/ (3960 x efficiency) where efficiency for these pumps can be as low
as 60% (0.60). That is only 0.09 hp for your 2 gpm need. You can use the
smallest pump you can find that will make 102 ft of head at 2 gpm and
that may be hard to find as small pumps usually don't make that much
head.

I did the calculation for 5 gpm and get 22 feet of friction loss in a 3/4
inch pipe. That means a hp of (5gpm x 121 ft)/(3960 x 0.6) = 0.255 hp. So
a 1/4 hp pump would supply a lot more than you need and that size is easy
to find but again the head rating is important.

There is no problem with an over-size pump, in this case. The pump only
draws as much power as it needs for the amount of water being pumped so
even a 1/2 hp pump wouldn't waste much electricity. Running a pump lower
than it's best range makes it operate in a less efficient range but that
might be 50% instead of 60%. It wouldn't harm the pump physically because
2 gpm is enough to lube and cool. So, if you can only find the pressure
requirement in a 1/2 hp pump and the price is right that is OK. Check the
shut-off head (head at zero flow) to make sure that your pipe can handle
that pressure. In the 1/2 hp range there are many pumps that make a lot
of pressure so be careful of that.

Also, use a pressure tank and probably a 30/50 switch - starts pump when
pressure falls below 30 psi and stops pump when pressure reaches 50 psi.
You divide psi by 0.433 to get feet of head. The pump's shut-off head
must be higher than the higher number of the switch or it won't make
enough pressure to cause the switch to turn off. These switches are
usually adjustable with a screwdriver so you can likely get a setting
that will work with your pump - just turn all the taps off so flow is
zero and if pump turns off at 50 psi, great. If it keeps running adjust
the shut-off screw until pump stops and then turn screw a bit more.- Hide quoted text -

- Show quoted text -


Thankls everyone for all the info. It is a great help. Reno, you
think a tank is really needed? I was originally thinking I'd just
couple the output to the drip system and let the automatic controller
turn the pump on when it opens a valve. I have seen some combo tank/
pumps that were not unreasonable but still a good deal more than just
a pump. I realize I would need to group enough drippers so I was able
to run a good deal of water through them.

I'm leaning towards the two pipe solution because we have had the lake
drop during severe droughts. My suction requirement could go up
another 8 to 10 feet if that happens. And that would be a period when
I needed the system the most to irrigate.

I'm going to call the corp today and see what the deal is. Sounds
like the engineering is not a show stopper.
  #13   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 68
Default another irrigation pump question

jamesgangnc wrote in
:

On Jul 25, 7:31*pm, Reno wrote:
jamesgangnc wrote in news:e2726069-c968-4f1a-
:





Thanks for the pointers on the last one. *Much appreciated. *I had

no
idea there were suction limits. *I have not talked to the corp yet
bu

t
I have heard via others that they do issue permits for personal
irrigation usage. *And from the response to my last post I'm
thinking the only practical solution for me is a shallow well jet
pump. *The pump can remain on my property and I can easily supply
electrical power. *Running power to the lake is out of the question
because o fthe flood issues. *The corp is very restrictive about
that. *I jus

t
have to run water lines down to the jet foot in the lake. *That's
the part I'm investigating now.


I'd like something cheap and easily taken up or moved if needed. *I
see that normally some pretty large pipe is used for a home jet
pump. And it's not cheap. *But I also only need to accomplish 30
psi at about 2 gpm. *I'm wondering if I can get away with 1 inch
poly for th

e
main pipe and 1/2 inch poly for the jet supply? *Any thoughts? *Aga

in
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


Are you sure of the 2 gpm rate? Seems a bit low to me but if all you
need is 2 gpm then you could use 3/4" for the main pipe and 1/2 inch
for the jet supply. Smaller pipe is easier to prime so don't
over-size it. Get a good foot valve to make priming as easy as
possible and hopefully one priming will last a long time. Priming and
keeping prime is the main disadvantage of long pipe runs from the
source.

For your 2 gpm *you need a pump that will supply 2 gpm at 102 feet of
head - 3 ft friction losses, 69 ft for the 30 psi pressure and 30 ft
for the static lift. The equation for horsepower is *hp = (gpm x head
in feet)/ (3960 x efficiency) where efficiency for these pumps can be
as low as 60% (0.60). That is only 0.09 hp for your 2 gpm need. You
can use the smallest pump you can find that will make 102 ft of head
at 2 gpm and that may be hard to find as small pumps usually don't
make that much head.

I did the calculation for 5 gpm and get 22 feet of friction loss in a
3/4 inch pipe. That means a hp of (5gpm x 121 ft)/(3960 x 0.6) =
0.255 hp.

So
a 1/4 hp pump would supply a lot more than you need and that size is
easy to find but again the head rating is important.

There is no problem with an over-size pump, in this case. The pump
only draws as much power as it needs for the amount of water being
pumped so even a 1/2 hp pump wouldn't waste much electricity. Running
a pump lower than it's best range makes it operate in a less
efficient range but that might be 50% instead of 60%. It wouldn't
harm the pump physically because 2 gpm is enough to lube and cool.
So, if you can only find the pressure requirement in a 1/2 hp pump
and the price is right that is OK. Check the shut-off head (head at
zero flow) to make sure that your pipe can handle that pressure. In
the 1/2 hp range there are many pumps that make a lot of pressure so
be careful of that.

Also, use a pressure tank and probably a 30/50 switch - starts pump
when pressure falls below 30 psi and stops pump when pressure reaches
50 psi. You divide psi by 0.433 to get feet of head. The pump's
shut-off head must be higher than the higher number of the switch or
it won't make enough pressure to cause the switch to turn off. These
switches are usually adjustable with a screwdriver so you can likely
get a setting that will work with your pump - just turn all the taps
off so flow is zero and if pump turns off at 50 psi, great. If it
keeps running adjust the shut-off screw until pump stops and then
turn screw a bit more.- Hide

quoted text -

- Show quoted text -


Thankls everyone for all the info. It is a great help. Reno, you
think a tank is really needed? I was originally thinking I'd just
couple the output to the drip system and let the automatic controller
turn the pump on when it opens a valve. I have seen some combo tank/
pumps that were not unreasonable but still a good deal more than just
a pump. I realize I would need to group enough drippers so I was able
to run a good deal of water through them.

I'm leaning towards the two pipe solution because we have had the lake
drop during severe droughts. My suction requirement could go up
another 8 to 10 feet if that happens. And that would be a period when
I needed the system the most to irrigate.

I'm going to call the corp today and see what the deal is. Sounds
like the engineering is not a show stopper.


If you can make the pipe system leakproof and keep it that way for years
then a tank is not strictly necesary. Small leakage only does harm when
the pump is not supposed to be running. The leak lets pressures drop
which starts the pump but since the major water use is closed the
pressure immediately rises and stops the pump. It can cycle every minute
or worse. More than 6 to 8 cycles per hour kills pumps. You could try
going without a tank and monitor the pump for cycling when it is supposed
to be off. If it cycles, find and fix the leak or if that proves
difficult install a tank. Or skip the automatic controller and manually
operate the pump valve.

Your tank may need to be 20 gallons or more in size, for the 2 gpm flow
rate. Too small a tank will also cause cycling. Tank size must be matched
to pump capacity, pump performance characteristics and system flow rate.
If you don't know how to do this then you may be better off without a
tank at all than to have a small tank causing the short cycling that you
are trying to avoid. You can minimize cycling by using as large a spread
as possible for the control switch. Switches come in settings of 30/50 or
40/60, etc which describe the start and stop pressures in psi. These
numbers are designed for potable water applications where the pressure in
a house system should not get too low or too high. These switches are
usually adjustable so you could set it to something like 15/70. Many
factors can influence these settings. If you are pumping uphill then the
lower (start) pressure must be higher than the elevation difference
converted to psi plus a bit. The higher (stop) pressure must be lower
than the pump shut-off head or the pump will never reach this value and
thus never shut off.

If your lake level drops significantly then that can affect the pump
performance considerably. Since your 2 gpm load is much less than the
likely pump selection there should be little impact. If the pump capacity
is close to the applied load then you could have problems. Pump selection
should be made by computing a system head curve and plotting this on the
manufacturer's pump performance curve graph. Where these curves cross is
where the pump will run - when some one says a pump makes 5 gpm at 120
feet head it means the curves cross at this point. Less flow will have
more pressure and vice-versa. Some pumps have a steep performance curve
which means that a large change in pressure has a small effect on flow.
Some pumps have a flat curve which means that a small change in pressure
will have a large effect on flow. Your case has large changes in lake
level and these levels are included in the total pressure that a pump can
make - if the lift increases then the pressure head is reduced. So a
steep curve would be best as it would tolerate changes in lake level
better. You would lose pressure at the drip line so get a pump for the
worst case of lowest lake level. Add the lift, the losses and the
required pressure at the drip line to get head at the needed flow.

The tank prevents frequent cycling of the pump. Cycling kills pumps for
two reasons - 1) pumps draw about twice the amps for starting as they do
while just running. This large draw heats up the motor windings which
cool down while running. If the motor starts too often, more than about 6
or 8 times an hour, then the heat builds up and kills the motor. 2) The
motor starter uses points just like in the old car distributors. The
points carry a lot more amps than in cars which were high voltage but low
amps. The high amp tends to wear out the points more quickly so it is
best to minimize the number of starts. If you are lucky, frequent cycling
will just trip the high temp protection for the pump motor - cheap motors
might not have this. So you can monitor cycling rates by frequency of
motor re-sets or wear rate of the points. A good system never needs new
points and maybe a motor re-set once a year or two. Generally the pump
and motor wear out before they give these problems.

The two pipe solution is definitely required for high lift cases such as
yours. Suction lift is the same concept as a person sucking a drink up a
straw. It is not the negative pressure sucking that moves fluid up the
straw; it is atmospheric pressure pushing. Atmospheric pressure is 14.7
ps which computes to 33 feet of head. So if a pump could create perfect
suctiion then the absolute maximum lift would be 33 feet vertical. Pumps
are imperfect so their max lift is in the range of 28 feet for great
pumps to about 20 feet for many pumps. Lift can be as low as 5 feet for
some types of pumps such as trash pumps which have large clearances
inside the casings to allow for large objects to pass through the pump. A
cheap irrigation pump should be in the range of 18 to 22 feet. This will
decrease with time because internal clearances will increase as the pump
wears.

Say the pump can do 20 feet of lift. From this you must subtract
hydraulic losses such as; friction loss, entrance loss, foot valve loss,
and possibly other losses. Thus the 20 feet potential leaves only about
15 feet for actual vertical lifting. So if your case calls for more than
about 15 feet of lift you must use either the two pipe system, move the
pump lower and closer to the water source or use a submersible pump. I
have had a lot of problems with pumps losing prime or being difficult to
prime so I favour submersibles or locations where the pump suction lines
can be as short as possible. As you describe the situation a two pipe
system is the logical choice.

Another issue - you wish to pump for a drip system. Drips are sensitive
to clogging by algae, dirt, etc. If your source is clean water then at a
minimum you must use a good fine screen. Screens can plug and the way to
minimize screen clogging is to use a large screen so flow velocity
through the screen openings is lower. A large screen takes longer to clog
so mainenance has a better chance to keep up. I often put a second, very
large screen around an intake that is either disposable or at least
easier to clean without pulling the intake. Locate the intake so screen
condition is easy to see and easy to clean. If you have fine dirt or
algae issues then you may need a filter in your system. The filter must
be large enough and located downstream of the pump. The pump must be
sized for the extra pressure loss of the filter. I like sand filters with
backwash valves for some applications. Filter losses can be anything but
5 to 10 psi can be a good guess. Undersized filters can lose 20 psi or
more. Put a pressure guage on both sides of the filter and backwash when
it reaches the filter manufacturer's recomendation. Severe algae
conditions would preclude a drip irrigation option as the frequent filter
cleaning would be too much to keep up with. No filter and algae in the
water would result in a plugged drip system that would essentially
destroy it. Note that algae growth is worse for dry hot weather, just
when irrigation need is highest.
  #14   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 1,567
Default another irrigation pump question

On Jul 26, 10:47*am, Reno wrote:
jamesgangnc wrote :

On Jul 25, 7:31*pm, Reno wrote:
jamesgangnc wrote in news:e2726069-c968-4f1a-
:


Thanks for the pointers on the last one. *Much appreciated. *I had

no
idea there were suction limits. *I have not talked to the corp yet
bu

t
I have heard via others that they do issue permits for personal
irrigation usage. *And from the response to my last post I'm
thinking the only practical solution for me is a shallow well jet
pump. *The pump can remain on my property and I can easily supply
electrical power. *Running power to the lake is out of the question
because o fthe flood issues. *The corp is very restrictive about
that. *I jus

t
have to run water lines down to the jet foot in the lake. *That's
the part I'm investigating now.


I'd like something cheap and easily taken up or moved if needed. *I
see that normally some pretty large pipe is used for a home jet
pump. And it's not cheap. *But I also only need to accomplish 30
psi at about 2 gpm. *I'm wondering if I can get away with 1 inch
poly for th

e
main pipe and 1/2 inch poly for the jet supply? *Any thoughts? *Aga

in
the lake is about 250' away with a 25 to 30' rise to the house.
Thanks to all :-)


Are you sure of the 2 gpm rate? Seems a bit low to me but if all you
need is 2 gpm then you could use 3/4" for the main pipe and 1/2 inch
for the jet supply. Smaller pipe is easier to prime so don't
over-size it. Get a good foot valve to make priming as easy as
possible and hopefully one priming will last a long time. Priming and
keeping prime is the main disadvantage of long pipe runs from the
source.


For your 2 gpm *you need a pump that will supply 2 gpm at 102 feet of
head - 3 ft friction losses, 69 ft for the 30 psi pressure and 30 ft
for the static lift. The equation for horsepower is *hp = (gpm x head
in feet)/ (3960 x efficiency) where efficiency for these pumps can be
as low as 60% (0.60). That is only 0.09 hp for your 2 gpm need. You
can use the smallest pump you can find that will make 102 ft of head
at 2 gpm and that may be hard to find as small pumps usually don't
make that much head.


I did the calculation for 5 gpm and get 22 feet of friction loss in a
3/4 inch pipe. That means a hp of (5gpm x 121 ft)/(3960 x 0.6) =
0.255 hp.

So
a 1/4 hp pump would supply a lot more than you need and that size is
easy to find but again the head rating is important.


There is no problem with an over-size pump, in this case. The pump
only draws as much power as it needs for the amount of water being
pumped so even a 1/2 hp pump wouldn't waste much electricity. Running
a pump lower than it's best range makes it operate in a less
efficient range but that might be 50% instead of 60%. It wouldn't
harm the pump physically because 2 gpm is enough to lube and cool.
So, if you can only find the pressure requirement in a 1/2 hp pump
and the price is right that is OK. Check the shut-off head (head at
zero flow) to make sure that your pipe can handle that pressure. In
the 1/2 hp range there are many pumps that make a lot of pressure so
be careful of that.


Also, use a pressure tank and probably a 30/50 switch - starts pump
when pressure falls below 30 psi and stops pump when pressure reaches
50 psi. You divide psi by 0.433 to get feet of head. The pump's
shut-off head must be higher than the higher number of the switch or
it won't make enough pressure to cause the switch to turn off. These
switches are usually adjustable with a screwdriver so you can likely
get a setting that will work with your pump - just turn all the taps
off so flow is zero and if pump turns off at 50 psi, great. If it
keeps running adjust the shut-off screw until pump stops and then
turn screw a bit more.- Hide

*quoted text -


- Show quoted text -


Thankls everyone for all the info. *It is a great help. *Reno, you
think a tank is really needed? *I was originally thinking I'd just
couple the output to the drip system and let the automatic controller
turn the pump on when it opens a valve. *I have seen some combo tank/
pumps that were not unreasonable but still a good deal more than just
a pump. *I realize I would need to group enough drippers so I was able
to run a good deal of water through them.


I'm leaning towards the two pipe solution because we have had the lake
drop during severe droughts. *My suction requirement could go up
another 8 to 10 feet if that happens. *And that would be a period when
I needed the system the most to irrigate.


I'm going to call the corp today and see what the deal is. *Sounds
like the engineering is not a show stopper.


If you can make the pipe system leakproof and keep it that way for years
then a tank is not strictly necesary. Small leakage only does harm when
the pump is not supposed to be running. The leak lets pressures drop
which starts the pump but since the major water use is closed the
pressure immediately rises and stops the pump. It can cycle every *minute
or worse. More than 6 to 8 cycles per hour kills pumps. You could try
going without a tank and monitor the pump for cycling when it is supposed
to be off. If it cycles, find and fix the leak or if that proves
difficult install a tank. Or skip the automatic controller and manually
operate the pump valve.

Your tank may need to be 20 gallons or more in size, for the 2 gpm flow
rate. Too small a tank will also cause cycling. Tank size must be matched
to pump capacity, pump performance characteristics and system flow rate.
If you don't know how to do this then you may be better off without a
tank at all than to have a small tank causing the short cycling that you
are trying to avoid. You can minimize cycling by using as large a spread
as possible for the control switch. Switches come in settings of 30/50 or
40/60, etc which describe the start and stop pressures in psi. These
numbers are designed for potable water applications where the pressure in
a house system should not get too low or too high. These switches are
usually adjustable so you could set it to something like 15/70. Many
factors can influence these settings. If you are pumping uphill then the
lower (start) pressure must be higher than the elevation difference
converted to psi plus a bit. The higher (stop) pressure must be lower
than the pump shut-off head or the pump will never reach this value and
thus never shut off.

If your lake level drops significantly then that can affect the pump
performance considerably. Since your 2 gpm load is much less than the
likely pump selection there should be little impact. If the pump capacity
is close to the applied load then you could have problems. Pump selection
should be made by computing a system head curve and plotting this on the
manufacturer's pump performance curve graph. Where these curves cross is
where the pump will run - when some one says a pump makes 5 gpm at 120
feet head it means the curves cross at this point. Less flow will have
more pressure and vice-versa. Some pumps have a steep performance curve
which means that a large change in pressure has a small effect on flow.
Some pumps have a flat curve which means that a small change in pressure
will have a large effect on flow. Your case has large changes in lake
level and these levels are included in the total pressure that a pump can
make - if the lift increases then the pressure head is reduced. So a
steep curve would be best as it would tolerate changes in lake level
better. You would lose pressure at the drip line so get a pump for the
worst case of lowest lake level. Add the lift, the losses and the
required pressure at the drip line to get head at the needed flow.

The tank prevents frequent cycling of the pump. Cycling kills pumps for
two reasons - 1) pumps draw about twice the amps for starting as they do
while just running. This large draw heats up the motor windings which
cool down while running. If the motor starts too often, more than about 6
or 8 times an hour, then the heat builds up and kills the motor. 2) The
motor starter uses points just like in the old car distributors. The
points carry a lot more amps than in cars which were high voltage but low
amps. The high amp tends to wear out the points more quickly so it is
best to minimize the number of starts. If you are lucky, frequent cycling
will just trip the high temp protection for the pump motor - cheap motors
might not have this. So you can monitor cycling rates by frequency of
motor re-sets or wear rate of the points. A good system never needs new
points and maybe a motor re-set once a year or two. Generally the pump
and motor wear out before they give these problems.

The two pipe solution is definitely required for high lift cases such as
yours. Suction lift is the same concept as a person sucking a drink up a
straw. It is not the negative pressure sucking that moves fluid up the
straw; it is atmospheric pressure pushing. Atmospheric pressure is 14.7
ps which computes to 33 feet of head. So if a pump could create perfect
suctiion then the absolute maximum lift would be 33 feet vertical. Pumps
are imperfect so their max lift is in the range of 28 feet for great
pumps to about 20 feet for many pumps. Lift can be as low as 5 feet for
some types of pumps such as trash pumps which have large clearances
inside the casings to allow for large objects to pass through the pump. A
cheap irrigation pump should be in the range of 18 to 22 feet. This will
decrease with time because internal clearances will increase as the pump
wears.

Say the pump can do 20 feet of lift. From this you must subtract
hydraulic losses such as; friction loss, entrance loss, foot valve loss,
and possibly other losses. Thus the 20 feet potential leaves only about
15 feet for actual vertical lifting. So if your case calls for more than
about 15 feet of lift you must use either the two pipe system, move the
pump lower and closer to the water source or use a submersible pump. I
have had a lot of problems with pumps losing prime or being difficult to
prime so I favour submersibles or locations where the pump suction lines
can be as short as possible. As you describe the situation a two pipe
system is the logical choice.

Another issue - you wish to pump for a drip system. Drips are sensitive
to clogging by algae, dirt, etc. If your source is clean water then at a
minimum you must use a good fine screen. Screens can plug and the way to
minimize screen clogging is to use a large screen so flow velocity
through the screen openings is lower. A large screen takes longer to clog
so mainenance has a better chance to keep up. I often put a second, very
large screen around an intake that is either disposable or at least
easier to clean without pulling the intake. Locate the intake so screen
condition is easy to see and easy to clean. If you have fine dirt or
algae issues then you may need a filter in your system. The filter must
be large enough and located downstream of the pump. The pump must be
sized for the extra pressure loss of the filter. I like sand filters with
backwash valves for some applications. Filter losses can be anything but
5 to 10 psi can be a good guess. Undersized filters can lose 20 psi or
more. Put a pressure guage on both sides of the filter and backwash when
it reaches the filter manufacturer's recomendation. Severe algae
conditions would preclude a drip irrigation option as the frequent filter
cleaning would be too much to keep up with. No filter and algae in the
water would result in a plugged drip system that would essentially
destroy it. Note that algae growth is worse for dry hot weather, just
when irrigation need is highest.


Thanks again!

You might have missed, in my no tank scenario I would turn the pump on
with the irrigation controls. So the pump would not run except when I
actually needed water. Most irrigation controls have a pump lead that
can be used to fire a 24v contactor.

I had not considered the filter issues. The lake water is very clean
but obviously not perfect. I have the irrigation on a well now and
simply use a small sand trap before the valves. So what I save on a
tank might end up getting spent on a filter.
  #15   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 68
Default another irrigation pump question



You might have missed, in my no tank scenario I would turn the pump on
with the irrigation controls. So the pump would not run except when I
actually needed water. Most irrigation controls have a pump lead that
can be used to fire a 24v contactor.

I had not considered the filter issues. The lake water is very clean
but obviously not perfect. I have the irrigation on a well now and
simply use a small sand trap before the valves. So what I save on a
tank might end up getting spent on a filter.


I did miss that. In this case a tank is not needed. Sometimes you can get
a combination of start and stop pressures that cause a pump to start and
stop repeatedly that is not the sort of thing a tank is intended to
solve. This happens when the pump can hit the stop pressure while
running. Either the pump makes too much pressure or the flow being drawn
is too low for that pump. This may happen to you because you have a low
flow low horsepower situation which may lead to an over-sized pump.

Easy solution would be to just throttle it down a bit. So make sure there
is a valve in place downstream of the pump and preferably near the pump
that you can turn down until it behaves. A globe valve will hold a
setting better and be less likely to get 're-adjusted' by someone else.
Ball valves are OK but need a wire or something to prevent them vibrating
to a different setting. Hang a note on it stating it is a throttling
valve and not to be adjusted by others.

If you are just running at 2 gpm you could try a simple screen filter
like the one frim the site below;

http://www.sprinklersupplies4less.co...ete-unit-mesh-
polyester-p-22530.html

This is the 1 inch size 250 mesh screen. I have either this unit or
something very similar on my geothermal open loop system, except in 1 1/2
inch size with 100 mesh and my filter box says BII on it. Looks the same
as the photo.

The 250 mesh is recommended for drip irrigation. Cost is shown at $70 and
replacement filters cost $36. These are tough units with clear cases so
you can see if there is sand in the bottom that can be cleared by opening
the valve for a second. You can also see if the filter is dirty. I have
been cleaning mine every 3 months or so for 4 years and am still on the
same filter. Use plumbers grease on the o-rings and threads everytime you
re-assemble the unit and it should last a long time. Grease is essential
or high forces are needed to remove the case to clean the filter and I am
sure those forces will reduce the life of the unit. Sure reduced the life
of my wrists before I twigged to the grease. Plumbers grease is best as
some other greases will deteriorate plastics or rubbers. It can take a
bit of force to turn the case into the body of the filter so make sure
the body and it's pipes are securely anchored and can tolerate heavy
twisting motions.


  #16   Report Post  
Posted to alt.home.repair
external usenet poster
 
Posts: 1,567
Default another irrigation pump question

On Jul 27, 3:45*pm, Reno wrote:
You might have missed, in my no tank scenario I would turn the pump on
with the irrigation controls. *So the pump would not run except when I
actually needed water. Most irrigation controls have a pump lead that
can be used to fire a 24v contactor.


I had not considered the filter issues. *The lake water is very clean
but obviously not perfect. *I have the irrigation on a well now and
simply use a small sand trap before the valves. *So what I save on a
tank might end up getting spent on a filter.


I did miss that. In this case a tank is not needed. Sometimes you can get
a combination of start and stop pressures that cause a pump to start and
stop repeatedly that is not the sort of thing a tank is intended to
solve. This happens when the pump can hit the stop pressure while
running. Either the pump makes too much pressure or the flow being drawn
is too low for that pump. This may happen to you because you have a low
flow low horsepower situation which may lead to an over-sized pump.

Easy solution would be to just throttle it down a bit. So make sure there
is a valve in place downstream of the pump and preferably near the pump
that you can turn down until it behaves. A globe valve will hold a
setting better and be less likely to get 're-adjusted' by someone else.
Ball valves are OK but need a wire or something to prevent them vibrating
to a different setting. Hang a note on it stating it is a throttling
valve and not to be adjusted by others.

If you are just running at 2 gpm you could try a simple screen filter
like the one frim the site below;

http://www.sprinklersupplies4less.co...ete-unit-mesh-
polyester-p-22530.html

This is the 1 inch size 250 mesh screen. I have either this unit or
something very similar on my geothermal open loop system, except in 1 1/2
inch size with 100 mesh and my filter box says BII on it. Looks the same
as the photo.

The 250 mesh is recommended for drip irrigation. Cost is shown at $70 and
replacement filters cost $36. These are tough units with clear cases so
you can see if there is sand in the bottom that can be cleared by opening
the valve for a second. You can also see if the filter is dirty. I have
been cleaning mine every 3 months or so for 4 years and am still on the
same filter. Use plumbers grease on the o-rings and threads everytime you
re-assemble the unit and it should last a long time. Grease is essential
or high forces are needed to remove the case to clean the filter and I am
sure those forces will reduce the life of the unit. Sure reduced the life
of my wrists before I twigged to the grease. Plumbers grease is best as
some other greases will deteriorate plastics or rubbers. It can take a
bit of force to turn the case into the body of the filter so make sure
the body and it's pipes are securely anchored and can tolerate heavy
twisting motions.


Thanks. I actually already have a 1 inch one of those because the
well supply has some sand. Not sure if it's 250 mesh or not though.
I was just stopping the sand. I'm guessing it will clog up faster
with lake water.
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
irrigation pump help jamesgangnc[_3_] Home Repair 9 July 23rd 10 07:45 AM
OT - Ag irrigation question Jim Stewart Metalworking 4 June 25th 10 12:35 AM
Goulds Irrigation pump Not Working HELP [email protected] Home Repair 1 May 31st 06 09:47 PM
irrigation booster pump Art Home Repair 10 September 5th 05 02:47 AM
Irrigation question BillC Home Repair 2 July 21st 05 04:08 PM


All times are GMT +1. The time now is 09:37 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"