Home Repair (alt.home.repair) For all homeowners and DIYers with many experienced tradesmen. Solve your toughest home fix-it problems.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 775
Default Simpler solar attics

Laren Corie writes:

The ultimate performance solutions a 1) Isolate the solar gain space,
to let it go cold at night. If you eliminate all of the times that the sun
does not heat the room, you eliminate 100% of the backup heating, so you
don't need high Rvalue windows...


Maybe no windows at all, just plastic film glazing.

2) Nighttime window insulation. Basically the same strategy, but you are
closing the insulated door on the glass, instead of the whole room.
There can be problems.. some of them human.


Historically, most people tire of moving insulation twice a day. Twice a year
seems OK. Or automatically filling a glazing cavity with soap bubble foam
at night. My favorite "movable insulation" is a big fan with 2 thermostats
in an insulated wall between a sunspace and a living space.

3) Reduce the glazing area considerably, and get your Solar gain, via
simple, low cost wall type air panels, or a single glazed sunspace,
over the south wall.


We might rethink how we use spaces. People seldom look out windows at night.
They cover black holes with curtains. A living space might only have 1-2% of
the floorspace as windows for small views. Picture a core living space behind
enclosed porches, or "viewspaces" with lots of glazing for large views. During
the day, move into a viewspace and steal some heat or AC from the living space
with an occupancy sensor and a thermostat and a fan.

A 32x32x8' tall living space with 16'-deep SE and SW viewspaces and
a 48'x48' footprint might have 24ft^2 of R4 windows with 6 Btu/h-F. An R40
ceiling and R30 walls would add 32x32/40 = 26 and 33, with 30 more for
30 cfm of air leaks, if it's tight, for a total conductance of 95 Btu/h-F.

With 4 American Craftsman 6068-2 6'x80" U0.48 sliding glass doors ($269
each at Home Depot) or 320 ft^2 of R4 windows, a 16'x48' SE viewspace
would have a 123 Btu/h-F conductance. Two more doors would give a 16'x32'
SW space 61 Btu/h-F. The glazing might have overhangs to reduce summer
sun and dark mesh curtains to reduce light levels for people, eg 80%
greenhouse shadecloth, which preserves views, like a dark window screen.

If the average living space temp is 65 F and we spend 4 hours per day in
each 70 F viewspace (Henry Mercer built bonfires on the roof and moved from
desk to desk as the sun moved in his 6-story concrete castle in Doylestown
PA) on an average 30 F January day in Phila, the house needs 24h(65-30)95
+ 4h(70-34)123 + 4h(70-34)61 = 79.8K + 17.7K + 8.8K = 106K Btu/day of heat.
With 34.1K from 300 kWh/mo of frugal indoor electrical use, we need 72K
more solar heat, which might come from a solar attic.

The solar attics of Soldiers Grove (see http://www.ece.villanova.edu/~nick)
can be improved. They blow warm air down into a building during the day,
with a motorized damper to let the attic stay cool at night. Some have
rock bed or hypocaust stores, but few store heat for more than 1 day.

A new attic might have a $1/ft^2 corrugated R1 Dynaglas polycarbonate
20-year south roof with a 60 degree slope and 90% solar transmission.
NREL says 620 Btu/ft^2 falls on the ground and 1000 falls on a south wall
on an average January day in Phila, so 1 ft^2 of roof would collect
0.9(1000sin(60)+620cos(60)) = 1058 Btu/day.

Nathan Hurst's "Low-cost active heat storage" story in the July-September
2007 Issue 100 of ReNew (http:www.ata.org.au) shows how to collect solar heat
with a Mazda car radiator and its 16 watt electric fan. (I have a $35 1984
Dodge Omni radiator below my living room floor) With an 800 Btu/h-F air-water
thermal conductance like MagicAire's 2'x2' SHW2347 duct heat exchanger, we
could store 0.75x72K/6h = 9K Btu in 140 F water in 6 hours on an average day
with a 140+9K/800 = 151 F attic air temp. A radiator in a box below an attic
floor can both store and distribute heat, like this, viewed in a fixed font:

upper g
attic l
| | a
| | z
~ ~ i south --
| | n
| vertical | motorized / g
| duct | damper /
| | /
| | day /
| | /
| | /
| | / night attic floor
---| -------------............----------------------------------
| . r .
| . d room a d.
| . a air d f a. f
| . m out i m.
| == . p a a == p. a == room air in
| . e t e.
| . r o n r. n
| . r .
-------------------------------------
| |
| duct to |
| room floor |
| |
| |
~ ~

To collect heat, open the motorized damper and run the radiator fan.
They typically last 3-4K hours at 225 F. If the fan lifetime doubles with
every 10 C decrease, it might last 70K hours at 150 F. To distribute heat,
close the motorized damper and run the room fan. The passive dampers could
be plastic film over hardware cloth, aka "the 7-cent solution" invented by
Doug Kelbaugh (now Dean of the UMich Architecture school) in Princeton in
1973. The motorized damper could be polyiso foamboard with an auto windshield
wiper motor and limit switches or Honeywell's $50 6161B1000 damper actuator,
which only uses 2 watts as it moves up to 45 in-lb. The room air outlet would
also have a passive damper that opens out of the page into another vertical
duct or closet to move warm air down into the room. The floor might have more
motorized dampers over polycarbonate film to bounce light and heat down into
rooms during the day.

If 1 ft^2 of glazing gains 1058 Btu/day and loses 6h(151-34)1ft^2/R1,
the net gain is 356, so we might need 50.4K/356 = 142 ft^2 of glazing.
A 4'x48' strip would do. At 140 F, we could make hot water for showers
with a $60 1"x300' piece of pressurized black PE pipe in a heat storage
tank and a simple graywater heat exchanger (eg 2 uninsulated 55 gallon
plastic drums) to add heat to the house.

On an average day, with an 800 Btu/h-F radiator conductance, we can heat
the living space with 70 + (70-30)95/800 = 75 F water. If the viewspace
use patterns don't change on cloudy days, we can store 5x72K = 360K Btu
for 5 cloudy days in a row in 360K/(140-75) = 5538 pounds of water, ie
665 gallons, in an STSS tank or a 4'x8'x3'-tall plywood box lined with
a single folded 10'x16' piece of EPDM rubber.

Nick

  #2   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 4,926
Default Simpler solar attics

On Aug 21, 10:31 am, wrote:
Laren Corie writes:
The ultimate performance solutions a 1) Isolate the solar gain space,
to let it go cold at night. If you eliminate all of the times that the sun
does not heat the room, you eliminate 100% of the backup heating, so you
don't need high Rvalue windows...


Maybe no windows at all, just plastic film glazing.

2) Nighttime window insulation. Basically the same strategy, but you are
closing the insulated door on the glass, instead of the whole room.
There can be problems.. some of them human.


Historically, most people tire of moving insulation twice a day. Twice a year
seems OK. Or automatically filling a glazing cavity with soap bubble foam
at night. My favorite "movable insulation" is a big fan with 2 thermostats
in an insulated wall between a sunspace and a living space.

3) Reduce the glazing area considerably, and get your Solar gain, via
simple, low cost wall type air panels, or a single glazed sunspace,
over the south wall.


We might rethink how we use spaces. People seldom look out windows at night.
They cover black holes with curtains. A living space might only have 1-2% of
the floorspace as windows for small views. Picture a core living space behind
enclosed porches, or "viewspaces" with lots of glazing for large views. During
the day, move into a viewspace and steal some heat or AC from the living space
with an occupancy sensor and a thermostat and a fan.

A 32x32x8' tall living space with 16'-deep SE and SW viewspaces and
a 48'x48' footprint might have 24ft^2 of R4 windows with 6 Btu/h-F. An R40
ceiling and R30 walls would add 32x32/40 = 26 and 33, with 30 more for
30 cfm of air leaks, if it's tight, for a total conductance of 95 Btu/h-F.

With 4 American Craftsman 6068-2 6'x80" U0.48 sliding glass doors ($269
each at Home Depot) or 320 ft^2 of R4 windows, a 16'x48' SE viewspace
would have a 123 Btu/h-F conductance. Two more doors would give a 16'x32'
SW space 61 Btu/h-F. The glazing might have overhangs to reduce summer
sun and dark mesh curtains to reduce light levels for people, eg 80%
greenhouse shadecloth, which preserves views, like a dark window screen.

If the average living space temp is 65 F and we spend 4 hours per day in
each 70 F viewspace (Henry Mercer built bonfires on the roof and moved from
desk to desk as the sun moved in his 6-story concrete castle in Doylestown
PA) on an average 30 F January day in Phila, the house needs 24h(65-30)95
+ 4h(70-34)123 + 4h(70-34)61 = 79.8K + 17.7K + 8.8K = 106K Btu/day of heat.
With 34.1K from 300 kWh/mo of frugal indoor electrical use, we need 72K
more solar heat, which might come from a solar attic.

The solar attics of Soldiers Grove (seehttp://www.ece.villanova.edu/~nick)
can be improved. They blow warm air down into a building during the day,
with a motorized damper to let the attic stay cool at night. Some have
rock bed or hypocaust stores, but few store heat for more than 1 day.

A new attic might have a $1/ft^2 corrugated R1 Dynaglas polycarbonate
20-year south roof with a 60 degree slope and 90% solar transmission.
NREL says 620 Btu/ft^2 falls on the ground and 1000 falls on a south wall
on an average January day in Phila, so 1 ft^2 of roof would collect
0.9(1000sin(60)+620cos(60)) = 1058 Btu/day.

Nathan Hurst's "Low-cost active heat storage" story in the July-September
2007 Issue 100 of ReNew (http:www.ata.org.au) shows how to collect solar heat
with a Mazda car radiator and its 16 watt electric fan. (I have a $35 1984
Dodge Omni radiator below my living room floor) With an 800 Btu/h-F air-water
thermal conductance like MagicAire's 2'x2' SHW2347 duct heat exchanger, we
could store 0.75x72K/6h = 9K Btu in 140 F water in 6 hours on an average day
with a 140+9K/800 = 151 F attic air temp. A radiator in a box below an attic
floor can both store and distribute heat, like this, viewed in a fixed font:

upper g
attic l
| | a
| | z
~ ~ i south --
| | n
| vertical | motorized / g
| duct | damper /
| | /
| | day /
| | /
| | /
| | / night attic floor
---| -------------............----------------------------------
| . r .
| . d room a d.
| . a air d f a. f
| . m out i m.
| == . p a a == p. a == room air in
| . e t e.
| . r o n r. n
| . r .
-------------------------------------
| |
| duct to |
| room floor |
| |
| |
~ ~

To collect heat, open the motorized damper and run the radiator fan.
They typically last 3-4K hours at 225 F. If the fan lifetime doubles with
every 10 C decrease, it might last 70K hours at 150 F. To distribute heat,
close the motorized damper and run the room fan. The passive dampers could
be plastic film over hardware cloth, aka "the 7-cent solution" invented by
Doug Kelbaugh (now Dean of the UMich Architecture school) in Princeton in
1973. The motorized damper could be polyiso foamboard with an auto windshield
wiper motor and limit switches or Honeywell's $50 6161B1000 damper actuator,
which only uses 2 watts as it moves up to 45 in-lb. The room air outlet would
also have a passive damper that opens out of the page into another vertical
duct or closet to move warm air down into the room. The floor might have more
motorized dampers over polycarbonate film to bounce light and heat down into
rooms during the day.

If 1 ft^2 of glazing gains 1058 Btu/day and loses 6h(151-34)1ft^2/R1,
the net gain is 356, so we might need 50.4K/356 = 142 ft^2 of glazing.
A 4'x48' strip would do. At 140 F, we could make hot water for showers
with a $60 1"x300' piece of pressurized black PE pipe in a heat storage
tank and a simple graywater heat exchanger (eg 2 uninsulated 55 gallon
plastic drums) to add heat to the house.

On an average day, with an 800 Btu/h-F radiator conductance, we can heat
the living space with 70 + (70-30)95/800 = 75 F water. If the viewspace
use patterns don't change on cloudy days, we can store 5x72K = 360K Btu
for 5 cloudy days in a row in 360K/(140-75) = 5538 pounds of water, ie
665 gallons, in an STSS tank or a 4'x8'x3'-tall plywood box lined with
a single folded 10'x16' piece of EPDM rubber.

Nick


Name anybody you know that moves insulation twice a day or twice a
year for that matter, Soap bubbles, I think you have had to many
bubbles nick, we need more math to confirm this idea of yours.

  #3   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 22
Default Simpler solar attics

On Aug 21, 10:31 am, wrote:
Laren Corie writes:
The ultimate performance solutions a 1) Isolate the solar gain space,
to let it go cold at night. If you eliminate all of the times that the sun
does not heat the room, you eliminate 100% of the backup heating, so you
don't need high Rvalue windows...


Maybe no windows at all, just plastic film glazing.

2) Nighttime window insulation. Basically the same strategy, but you are
closing the insulated door on the glass, instead of the whole room.
There can be problems.. some of them human.


Historically, most people tire of moving insulation twice a day. Twice a year
seems OK. Or automatically filling a glazing cavity with soap bubble foam
at night. My favorite "movable insulation" is a big fan with 2 thermostats
in an insulated wall between a sunspace and a living space.

3) Reduce the glazing area considerably, and get your Solar gain, via
simple, low cost wall type air panels, or a single glazed sunspace,
over the south wall.


We might rethink how we use spaces. People seldom look out windows at night.
They cover black holes with curtains. A living space might only have 1-2% of
the floorspace as windows for small views. Picture a core living space behind
enclosed porches, or "viewspaces" with lots of glazing for large views. During
the day, move into a viewspace and steal some heat or AC from the living space
with an occupancy sensor and a thermostat and a fan.

A 32x32x8' tall living space with 16'-deep SE and SW viewspaces and
a 48'x48' footprint might have 24ft^2 of R4 windows with 6 Btu/h-F. An R40
ceiling and R30 walls would add 32x32/40 = 26 and 33, with 30 more for
30 cfm of air leaks, if it's tight, for a total conductance of 95 Btu/h-F.

With 4 American Craftsman 6068-2 6'x80" U0.48 sliding glass doors ($269
each at Home Depot) or 320 ft^2 of R4 windows, a 16'x48' SE viewspace
would have a 123 Btu/h-F conductance. Two more doors would give a 16'x32'
SW space 61 Btu/h-F. The glazing might have overhangs to reduce summer
sun and dark mesh curtains to reduce light levels for people, eg 80%
greenhouse shadecloth, which preserves views, like a dark window screen.

If the average living space temp is 65 F and we spend 4 hours per day in
each 70 F viewspace (Henry Mercer built bonfires on the roof and moved from
desk to desk as the sun moved in his 6-story concrete castle in Doylestown
PA) on an average 30 F January day in Phila, the house needs 24h(65-30)95
+ 4h(70-34)123 + 4h(70-34)61 = 79.8K + 17.7K + 8.8K = 106K Btu/day of heat.
With 34.1K from 300 kWh/mo of frugal indoor electrical use, we need 72K
more solar heat, which might come from a solar attic.

The solar attics of Soldiers Grove (seehttp://www.ece.villanova.edu/~nick)
can be improved. They blow warm air down into a building during the day,
with a motorized damper to let the attic stay cool at night. Some have
rock bed or hypocaust stores, but few store heat for more than 1 day.

A new attic might have a $1/ft^2 corrugated R1 Dynaglas polycarbonate
20-year south roof with a 60 degree slope and 90% solar transmission.
NREL says 620 Btu/ft^2 falls on the ground and 1000 falls on a south wall
on an average January day in Phila, so 1 ft^2 of roof would collect
0.9(1000sin(60)+620cos(60)) = 1058 Btu/day.

Nathan Hurst's "Low-cost active heat storage" story in the July-September
2007 Issue 100 of ReNew (http:www.ata.org.au) shows how to collect solar heat
with a Mazda car radiator and its 16 watt electric fan. (I have a $35 1984
Dodge Omni radiator below my living room floor) With an 800 Btu/h-F air-water
thermal conductance like MagicAire's 2'x2' SHW2347 duct heat exchanger, we
could store 0.75x72K/6h = 9K Btu in 140 F water in 6 hours on an average day
with a 140+9K/800 = 151 F attic air temp. A radiator in a box below an attic
floor can both store and distribute heat, like this, viewed in a fixed font:

upper g
attic l
| | a
| | z
~ ~ i south --
| | n
| vertical | motorized / g
| duct | damper /
| | /
| | day /
| | /
| | /
| | / night attic floor
---| -------------............----------------------------------
| . r .
| . d room a d.
| . a air d f a. f
| . m out i m.
| == . p a a == p. a == room air in
| . e t e.
| . r o n r. n
| . r .
-------------------------------------
| |
| duct to |
| room floor |
| |
| |
~ ~

To collect heat, open the motorized damper and run the radiator fan.
They typically last 3-4K hours at 225 F. If the fan lifetime doubles with
every 10 C decrease, it might last 70K hours at 150 F. To distribute heat,
close the motorized damper and run the room fan. The passive dampers could
be plastic film over hardware cloth, aka "the 7-cent solution" invented by
Doug Kelbaugh (now Dean of the UMich Architecture school) in Princeton in
1973. The motorized damper could be polyiso foamboard with an auto windshield
wiper motor and limit switches or Honeywell's $50 6161B1000 damper actuator,
which only uses 2 watts as it moves up to 45 in-lb. The room air outlet would
also have a passive damper that opens out of the page into another vertical
duct or closet to move warm air down into the room. The floor might have more
motorized dampers over polycarbonate film to bounce light and heat down into
rooms during the day.

If 1 ft^2 of glazing gains 1058 Btu/day and loses 6h(151-34)1ft^2/R1,
the net gain is 356, so we might need 50.4K/356 = 142 ft^2 of glazing.
A 4'x48' strip would do. At 140 F, we could make hot water for showers
with a $60 1"x300' piece of pressurized black PE pipe in a heat storage
tank and a simple graywater heat exchanger (eg 2 uninsulated 55 gallon
plastic drums) to add heat to the house.

On an average day, with an 800 Btu/h-F radiator conductance, we can heat
the living space with 70 + (70-30)95/800 = 75 F water. If the viewspace
use patterns don't change on cloudy days, we can store 5x72K = 360K Btu
for 5 cloudy days in a row in 360K/(140-75) = 5538 pounds of water, ie
665 gallons, in an STSS tank or a 4'x8'x3'-tall plywood box lined with
a single folded 10'x16' piece of EPDM rubber.

Nick


Wow, thank you for the posting. Really enjoyed it.

Ken


Opportunities are never lost. The other fellow takes those you miss.


| Torrey Hills Technologies, LLC |
| www.threerollmill.com |
| www.torreyhillstech.com |


  #4   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 163
Default Simpler solar attics

We did a bit recently on storing energy at the phase change of Glauber's
Salt (Sodium sulfate decahydrate) which melts at 90*F and when it cools
releases a tremendous amount of energy as Heat of Fusion as it solidifies.
It is less than $1/lb, and a barrel of it (dry) in a 55 gallon drum with
water circulating around it will be a major component of my new system.

"Torrey Hills" wrote in message
ups.com...
On Aug 21, 10:31 am, wrote:
Laren Corie writes:
The ultimate performance solutions a 1) Isolate the solar gain
space,
to let it go cold at night. If you eliminate all of the times that the
sun
does not heat the room, you eliminate 100% of the backup heating, so
you
don't need high Rvalue windows...


Maybe no windows at all, just plastic film glazing.

2) Nighttime window insulation. Basically the same strategy, but you
are
closing the insulated door on the glass, instead of the whole room.
There can be problems.. some of them human.


Historically, most people tire of moving insulation twice a day. Twice a
year
seems OK. Or automatically filling a glazing cavity with soap bubble foam
at night. My favorite "movable insulation" is a big fan with 2
thermostats
in an insulated wall between a sunspace and a living space.

3) Reduce the glazing area considerably, and get your Solar gain, via
simple, low cost wall type air panels, or a single glazed sunspace,
over the south wall.


We might rethink how we use spaces. People seldom look out windows at
night.
They cover black holes with curtains. A living space might only have 1-2%
of
the floorspace as windows for small views. Picture a core living space
behind
enclosed porches, or "viewspaces" with lots of glazing for large views.
During
the day, move into a viewspace and steal some heat or AC from the living
space
with an occupancy sensor and a thermostat and a fan.

A 32x32x8' tall living space with 16'-deep SE and SW viewspaces and
a 48'x48' footprint might have 24ft^2 of R4 windows with 6 Btu/h-F. An
R40
ceiling and R30 walls would add 32x32/40 = 26 and 33, with 30 more for
30 cfm of air leaks, if it's tight, for a total conductance of 95
Btu/h-F.

With 4 American Craftsman 6068-2 6'x80" U0.48 sliding glass doors ($269
each at Home Depot) or 320 ft^2 of R4 windows, a 16'x48' SE viewspace
would have a 123 Btu/h-F conductance. Two more doors would give a 16'x32'
SW space 61 Btu/h-F. The glazing might have overhangs to reduce summer
sun and dark mesh curtains to reduce light levels for people, eg 80%
greenhouse shadecloth, which preserves views, like a dark window screen.

If the average living space temp is 65 F and we spend 4 hours per day in
each 70 F viewspace (Henry Mercer built bonfires on the roof and moved
from
desk to desk as the sun moved in his 6-story concrete castle in
Doylestown
PA) on an average 30 F January day in Phila, the house needs 24h(65-30)95
+ 4h(70-34)123 + 4h(70-34)61 = 79.8K + 17.7K + 8.8K = 106K Btu/day of
heat.
With 34.1K from 300 kWh/mo of frugal indoor electrical use, we need 72K
more solar heat, which might come from a solar attic.

The solar attics of Soldiers Grove
(seehttp://www.ece.villanova.edu/~nick)
can be improved. They blow warm air down into a building during the day,
with a motorized damper to let the attic stay cool at night. Some have
rock bed or hypocaust stores, but few store heat for more than 1 day.

A new attic might have a $1/ft^2 corrugated R1 Dynaglas polycarbonate
20-year south roof with a 60 degree slope and 90% solar transmission.
NREL says 620 Btu/ft^2 falls on the ground and 1000 falls on a south wall
on an average January day in Phila, so 1 ft^2 of roof would collect
0.9(1000sin(60)+620cos(60)) = 1058 Btu/day.

Nathan Hurst's "Low-cost active heat storage" story in the July-September
2007 Issue 100 of ReNew (http:www.ata.org.au) shows how to collect solar
heat
with a Mazda car radiator and its 16 watt electric fan. (I have a $35
1984
Dodge Omni radiator below my living room floor) With an 800 Btu/h-F
air-water
thermal conductance like MagicAire's 2'x2' SHW2347 duct heat exchanger,
we
could store 0.75x72K/6h = 9K Btu in 140 F water in 6 hours on an average
day
with a 140+9K/800 = 151 F attic air temp. A radiator in a box below an
attic
floor can both store and distribute heat, like this, viewed in a fixed
font:

upper g
attic l
| | a
| | z
~ ~ i south --
| | n
| vertical | motorized / g
| duct | damper /
| | /
| | day /
| | /
| | /
| | / night attic floor
---| -------------............----------------------------------
| . r .
| . d room a d.
| . a air d f a. f
| . m out i m.
| == . p a a == p. a == room air in
| . e t e.
| . r o n r. n
| . r .
-------------------------------------
| |
| duct to |
| room floor |
| |
| |
~ ~

To collect heat, open the motorized damper and run the radiator fan.
They typically last 3-4K hours at 225 F. If the fan lifetime doubles with
every 10 C decrease, it might last 70K hours at 150 F. To distribute
heat,
close the motorized damper and run the room fan. The passive dampers
could
be plastic film over hardware cloth, aka "the 7-cent solution" invented
by
Doug Kelbaugh (now Dean of the UMich Architecture school) in Princeton in
1973. The motorized damper could be polyiso foamboard with an auto
windshield
wiper motor and limit switches or Honeywell's $50 6161B1000 damper
actuator,
which only uses 2 watts as it moves up to 45 in-lb. The room air outlet
would
also have a passive damper that opens out of the page into another
vertical
duct or closet to move warm air down into the room. The floor might have
more
motorized dampers over polycarbonate film to bounce light and heat down
into
rooms during the day.

If 1 ft^2 of glazing gains 1058 Btu/day and loses 6h(151-34)1ft^2/R1,
the net gain is 356, so we might need 50.4K/356 = 142 ft^2 of glazing.
A 4'x48' strip would do. At 140 F, we could make hot water for showers
with a $60 1"x300' piece of pressurized black PE pipe in a heat storage
tank and a simple graywater heat exchanger (eg 2 uninsulated 55 gallon
plastic drums) to add heat to the house.

On an average day, with an 800 Btu/h-F radiator conductance, we can heat
the living space with 70 + (70-30)95/800 = 75 F water. If the viewspace
use patterns don't change on cloudy days, we can store 5x72K = 360K Btu
for 5 cloudy days in a row in 360K/(140-75) = 5538 pounds of water, ie
665 gallons, in an STSS tank or a 4'x8'x3'-tall plywood box lined with
a single folded 10'x16' piece of EPDM rubber.

Nick


Wow, thank you for the posting. Really enjoyed it.

Ken


Opportunities are never lost. The other fellow takes those you miss.


| Torrey Hills Technologies, LLC |
| www.threerollmill.com |
| www.torreyhillstech.com |




  #5   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 11
Default Simpler solar attics

On Tue, 21 Aug 2007 11:07:52 -0700
ransley wrote:

Name anybody you know that moves insulation twice a day or twice a


That would be anybody who closes curtains at night.

--
C:WIN | Directable Mirror Arrays
The computer obeys and wins. | A better way to focus the sun
You lose and Bill collects. | licences available see
| http://www.sohara.org/


  #7   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 4,500
Default Simpler solar attics

On Aug 21, 5:30 pm, "HP. Blunt" wrote:
wrote:
Historically, most people tire of moving insulation twice a day. Twice a year
seems OK. Or automatically filling a glazing cavity with soap bubble foam
at night. My favorite "movable insulation" is a big fan with 2 thermostats
in an insulated wall between a sunspace and a living space.


Historically, most people never move insulation, unless they're some
kind of nut.

The only math anyone needs to know is, if someone wrote what you wrote
just one time, they shouldn't be allowed out in public without the
proper supervision.


Maybe he's not allowed out in public. Reminds me of the episode of
the Simpson's where Homer winds up in the psychiatric hospital. In
the day room, while he's making a phone call, you could see all the
speed dial buttons on the phone: Opra, Geraldo, Jerry Springer, etc.
Welcome to Nick's world. LOL

  #8   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 41
Default Simpler solar attics

Wayne's world comes to mind.

wrote in message
oups.com...
On Aug 21, 5:30 pm, "HP. Blunt" wrote:
wrote:
Historically, most people tire of moving insulation twice a day.
Twice a year
seems OK. Or automatically filling a glazing cavity with soap
bubble foam
at night. My favorite "movable insulation" is a big fan with 2
thermostats
in an insulated wall between a sunspace and a living space.


Historically, most people never move insulation, unless they're
some
kind of nut.

The only math anyone needs to know is, if someone wrote what you
wrote
just one time, they shouldn't be allowed out in public without the
proper supervision.


Maybe he's not allowed out in public. Reminds me of the episode of
the Simpson's where Homer winds up in the psychiatric hospital. In
the day room, while he's making a phone call, you could see all the
speed dial buttons on the phone: Opra, Geraldo, Jerry Springer,
etc.
Welcome to Nick's world. LOL



  #9   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 775
Default Simpler solar attics

wrote:

On Aug 21, 5:30 pm, "HP. Blunt" wrote:


The only math anyone needs to know is, if someone wrote what you wrote
just one time, they shouldn't be allowed out in public without the
proper supervision.


Maybe he's not allowed out in public...


They are letting me out on 9/22/2007 to lecture again at
the Pennsylvania Renewable Energy Festival :-)

http://www.paenergyfest.com

Nick

  #10   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 41
Default Simpler solar attics

Short of money again? or you were the only one that would do it for
nothing?

wrote in message
...
wrote:

On Aug 21, 5:30 pm, "HP. Blunt" wrote:


The only math anyone needs to know is, if someone wrote what you
wrote
just one time, they shouldn't be allowed out in public without the
proper supervision.


Maybe he's not allowed out in public...


They are letting me out on 9/22/2007 to lecture again at
the Pennsylvania Renewable Energy Festival :-)

http://www.paenergyfest.com

Nick





  #11   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 1,743
Default Simpler solar attics

wrote:

They are letting me out on 9/22/2007 to lecture again at
the Pennsylvania Renewable Energy Festival :-)

http://www.paenergyfest.com


I applied to give a seminar entitled: "Whale Oil - The Renewable Resource"
and the nay-sayers at the festival turned me down.

They do have a lecture on the Wind Depletion Allowance so tree-huggers can
save on their taxes.


  #12   Report Post  
Posted to alt.solar.thermal,alt.energy.homepower,alt.home.repair,misc.consumers.frugal-living
external usenet poster
 
Posts: 26
Default Simpler solar attics

HeyBub wrote:
I applied to give a seminar entitled: "Whale Oil - The Renewable Resource"
and the nay-sayers at the festival turned me down.


Perhaps you should give a lecture on Vivoleum.
http://www.dailykos.com/story/2007/6/14/214445/536
: "We need something like whales, but infinitely more abundant,"

Anthony
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
B&Q Solar [email protected] UK diy 218 October 22nd 06 11:41 PM
Solar? Otto Mation (Caroline Freisen) Home Ownership 9 July 13th 06 02:35 AM
Solar Graham Harrison UK diy 115 December 11th 05 11:44 PM
A better or simpler method? Ace Woodworking 9 December 9th 05 01:05 AM
old TI-32 Solar help? Anthony J. Biacco Electronics Repair 0 August 25th 05 11:31 PM


All times are GMT +1. The time now is 08:55 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"