Metalworking (rec.crafts.metalworking) Discuss various aspects of working with metal, such as machining, welding, metal joining, screwing, casting, hardening/tempering, blacksmithing/forging, spinning and hammer work, sheet metal work.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 19
Default Request for help with extension-spring biasing problem (illustration drawing link provided)

Hello everyone,

I would like to ask if anyone can please help me with the following
problem.

I have a small radial plate-cam and bearing housing (cam-housing)
that is oscillated manually by hand via a small lever. The cam-housing
is oscillated both clockwise and counter-clockwise from it's centered
neutral position at rest. The housing is centered by two opposing
extension springs connected to the underside of the housing. The
springs are basically connected in series with the housing itself
being a connection link between one end of each of the two springs.
The other spring ends are connected to anchor points, with one anchor
point being adjustable.

I have created three small GIF drawings that illustrate the design
layout, which I have zipped into a single small 44.8 KB folder. The
file was zipped with the free 7-Zip http://www.7-zip.org/ but you
should be able to open it with winzip or most anything. The drawings
can be downloaded from the following mediafire link...

http://www.mediafire.com/?eggxtcs95wy

This is a dual roller conjugate radial plate-cam having two rollers
that work on an inner and outer cam profile. The drawings show the two
opposing springs connected to the cam-housing, but they do not show
springs which are connected to the follower-roller swing arm, which
counter the load that the outer roller exerts onto the outer cam
profile or curve. At the centered neutral position shown in figure 1,
the cam follower rollers are in contact with the center of a 3-degree
dwell on the cam profile. After the lever is activated and released,
the springs connected to the roller swing arm bring the cam back to
it's home position, just to the point where the rollers start to
contact the start of the 3-degree dwell. After this point, the
opposing springs connected to the cam-housing bring the cam back to
it's neutral position so that the rollers are in contact with the
center of the 3-degree dwell on the cam profile, at the approximate
mid-point of the cam profile. Another function of the opposing springs
connected to the cam-housing is to hold the cam housing at it's
centered neutral position, where the rollers are in contact with the
dwell at the cam mid-point.

My main goal is to have the cam be returned as accurately as possible
to it's centered neutral position after the lever is activated and
released. As long as the cam is returned so that the rollers contact
either edge of the 3-degree dwell, or anywhere in-between, the cam
follower / rollers will be in their exact neutral position. So, I have
a 3-degree dead zone or a 3-degree room for error when returning the
cam to it's neutral position.

Even with no rollers in contact with the cam & nothing but the housing
itself just oscillating on a shaft with no load, when I move the
lever clockwise from it's neutral position and release it, it seems to
return to the same exact position each time, but when I then move the
lever counter-clockwise from it's neutral position, it is about 1.25-
degrees off from where it was before. When the rollers are in contact
with the cam and a load is applied, this seems to double the problem
to 2.5 degrees, so the end of the lever is basically ¼" from where it
should be at neutral. Some of the problem is due to some mis-alignment
I had between the cam & rollers which I can fix, and I can also reduce
roller friction as much as possible, but this still does not explain
why I am 1.25 degrees off even when there are no rollers or load in
contact with the cam.

Adding some type of physical or mechanical stop at neutral would seem
a logical way to bring the housing back to it's exact position each
time, but there are some tactile requirements for this design so I
don't want to put a physical or mechanical stop at neutral. I want to
preserve the balanced & smooth feel in the lever around the neutral
position as much as possible. The opposing springs I am using have a
rate of 140 lb per inch, but I may be able to use springs having a
rate ranging from 30 to 60 pounds per inch.

Here are some things that occurred to me...

1. Presently, I have an adjustment nut at one end of the two springs
which are connected in series at the cam housing. This means that I
can only lengthen or shorten both springs at once. I use this
adjustment to initially align the cam so that the rollers are in
contact with the center of the 3-degree dwell at neutral. However, If
I could put an adjustment screw at the spring connection point on the
cam, so that when an adjustment is made, one spring is lengthened and
one spring is shortened at the same time, it seems this might help. Do
you think an arrangement like this may solve my problem ?

2. The spring hooks may be repositioning themselves at the cam-housing
as the cam-housing is oscillated. Perhaps I could use a flat-head
screw through a loop-end instead of a hook, to connect the springs to
the housing. This would prevent the spring ends from repositioning
themselves on the housing as it's oscillated. I tried to screw the
hooks down with a center screw, but it did not seem to help as I could
still see them moving. Perhaps loops are necessary if a screw is used.
Referring to the drawings, the spring hooks are connected vertically
to the cam, but perhaps rotating the springs 90 degrees about their
longitudinal axis and connecting the hooks horizontally would be
better ? I have not tried this yet as I will have to redesign the
spring anchors.

3. Perhaps the problem is coming from manufacturing variances in the
spring rates and/or tensions. I could try to go with a precision made
extension spring. Compression springs and torsion springs would be
harder to implement, but still possible, if they could offer some
advantage. I prefer to use extension springs if possible. Perhaps a
urethane or non metallic spring would be better ? I've been thinking
of something like a thin rectangular piece of rubber or urethane that
can be screwed or connected to the underside of the housing. I'm
hoping I can find a compact and cost effective solution (preferably a
stock or easily made biasing element).

I don't need this thing to be perfect because the cam dwell gives me
some room for error, but I do need to be able to reliably return the
cam to it's neutral position so that the rollers are in contact with
some portion of the 3-degree dwell at neutral. If I can get a
repeatability of ½ or even 1-degree in each direction from neutral,
that should be OK.

Presently, the thing is darn close to where it needs to be but I just
need to tweak it to get a higher degree of repeatability and accuracy
when returning the cam to neutral.

I would appreciate any advice or suggestions anyone may have.

Thank you.
John

  #2   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 344
Default Request for help with extension-spring biasing problem (illustration drawing link provided)

John2005 wrote:

I would appreciate any advice or suggestions anyone may have.


Was too lazy to unzip your drawings, so maybe my tip is completely off.
But the words "central position" and "two springs in series" together
with "differences in springs" triggered:

Hairpin-spring!

You need a spring that looks like a hairpin; U-shaped. Maybe with several
windings (and not just a half). The loop slips over some axle. The thing
that has to be returned into neutral position has a pin that goes into the
gap formed by the two ends of the hairpin. That pin has to be bigger than
the gap (will be your returning force). Now there is a second pin that also
goes into the gap. If you move that, the two pins get appart and tensions
the spring more.

Maybe you understood what I wrote, if not, I can eMail you a sketch.

Here's a picture of such a spring:
http://www.enginehistory.org/ACEvolution/ACLawrancePenguin.jpg


Nick
--
The lowcost-DRO:
http://www.yadro.de
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Extension spring garage door - tensioning is not working!! jeff37 Home Repair 1 September 17th 07 07:36 PM
Request for help finding a cam curve that will have lower maximum contact stress than a Parabolic curve (and link to CAD and JPEG files) John2005 Metalworking 19 March 31st 06 04:30 AM
funny drawing softwaScreenPen,drawing directly on screen! [email protected] Metalworking 1 February 4th 06 10:24 PM
Request for help with steel shaft deflection problem John2005 Metalworking 14 October 11th 05 12:59 AM
AKAI GX-75 Biasing problem Robert Majerię Electronics Repair 2 October 14th 03 08:07 PM


All times are GMT +1. The time now is 11:20 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"