UK diy (uk.d-i-y) For the discussion of all topics related to diy (do-it-yourself) in the UK. All levels of experience and proficency are welcome to join in to ask questions or offer solutions.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Posted to uk.d-i-y
external usenet poster
 
Posts: 3,237
Default Standby generators and PME

I brief thought experiment involving connecting a generator frame and
neutral output to an earthing stake (about 100ohm if lucky) and then
opening the main service isolating switch to the house and connecting
the house electrics to the generator leads to the possibility, with an
external neutral fault in the supply system, the generator live being up
to 750 peak wrt real earth. Is this a danger that should be prevented,
and if so, how? It would seem to involve isolating the house
protective earth from the utility supply while the generator was
connected?

--

Roger Hayter
  #2   Report Post  
Posted to uk.d-i-y
external usenet poster
 
Posts: 12,364
Default Standby generators and PME

On Sunday, 27 May 2018 13:07:31 UTC+1, Roger Hayter wrote:
I brief thought experiment involving connecting a generator frame and
neutral output to an earthing stake (about 100ohm if lucky) and then
opening the main service isolating switch to the house and connecting
the house electrics to the generator leads to the possibility, with an
external neutral fault in the supply system, the generator live being up
to 750 peak wrt real earth. Is this a danger that should be prevented,
and if so, how? It would seem to involve isolating the house
protective earth from the utility supply while the generator was
connected?


The point of multi-point earthing is to stop the house earth connection going live. It does happen, but the risk is low and accepted.

240v rms is 330v pk so 660v pk on the live in the most exceptional circumstances. Not much of a risk, and dwarfed by what else would be going on.


NT
  #3   Report Post  
Posted to uk.d-i-y
ARW ARW is offline
external usenet poster
 
Posts: 10,161
Default Standby generators and PME

On 27/05/2018 13:07, Roger Hayter wrote:
I brief thought experiment involving connecting a generator frame and
neutral output to an earthing stake (about 100ohm if lucky) and then
opening the main service isolating switch to the house and connecting
the house electrics to the generator leads to the possibility, with an
external neutral fault in the supply system, the generator live being up
to 750 peak wrt real earth. Is this a danger that should be prevented,
and if so, how? It would seem to involve isolating the house
protective earth from the utility supply while the generator was
connected?


If you have an external neutral loss on a PME them you have also lost
the earth.

--
Adam
  #4   Report Post  
Posted to uk.d-i-y
external usenet poster
 
Posts: 12,364
Default Standby generators and PME

On Sunday, 27 May 2018 15:23:21 UTC+1, ARW wrote:
On 27/05/2018 13:07, Roger Hayter wrote:
I brief thought experiment involving connecting a generator frame and
neutral output to an earthing stake (about 100ohm if lucky) and then
opening the main service isolating switch to the house and connecting
the house electrics to the generator leads to the possibility, with an
external neutral fault in the supply system, the generator live being up
to 750 peak wrt real earth. Is this a danger that should be prevented,
and if so, how? It would seem to involve isolating the house
protective earth from the utility supply while the generator was
connected?


If you have an external neutral loss on a PME them you have also lost
the earth.


With a local genny you add a local earth rod, so it's not that simple.


NT
  #5   Report Post  
Posted to uk.d-i-y
external usenet poster
 
Posts: 3,237
Default Standby generators and PME

wrote:

On Sunday, 27 May 2018 15:23:21 UTC+1, ARW wrote:
On 27/05/2018 13:07, Roger Hayter wrote:
I brief thought experiment involving connecting a generator frame and
neutral output to an earthing stake (about 100ohm if lucky) and then
opening the main service isolating switch to the house and connecting
the house electrics to the generator leads to the possibility, with an
external neutral fault in the supply system, the generator live being up
to 750 peak wrt real earth. Is this a danger that should be prevented,
and if so, how? It would seem to involve isolating the house
protective earth from the utility supply while the generator was
connected?


If you have an external neutral loss on a PME them you have also lost
the earth.


With a local genny you add a local earth rod, so it's not that simple.


NT


So in theory, especially if you have a fairly low impedance earth, then
someone else's neutral return current can be trying to flow down it.
In our case, sharing a pole transformer with 4 houses with overhead
supply, there won't be that many (if any) multiple earths apart from the
one at the transformer pole and mine. In theory the neutral for all of
us could separate from both transformer and earth near this pole,
leaving the neutral side of the transformer secondary earthed.


--

Roger Hayter


  #6   Report Post  
Posted to uk.d-i-y
external usenet poster
 
Posts: 1,491
Default Standby generators and PME

On Sun, 27 May 2018 05:55:32 -0700, tabbypurr wrote:

On Sunday, 27 May 2018 13:07:31 UTC+1, Roger Hayter wrote:
I brief thought experiment involving connecting a generator frame and
neutral output to an earthing stake (about 100ohm if lucky) and then
opening the main service isolating switch to the house and connecting
the house electrics to the generator leads to the possibility, with an
external neutral fault in the supply system, the generator live being
up to 750 peak wrt real earth. Is this a danger that should be
prevented, and if so, how? It would seem to involve isolating the
house protective earth from the utility supply while the generator was
connected?


The point of multi-point earthing is to stop the house earth connection
going live. It does happen, but the risk is low and accepted.

240v rms is 330v pk so 660v pk on the live in the most exceptional
circumstances. Not much of a risk, and dwarfed by what else would be
going on.


If you must assume a worst case scenario, let's at least get the basic
calculations right. :-)

Peak voltage for a perfect 240v rms sine wave (the mains is far from
perfect[1] but let's put that aside for the moment), works out to be
339.40v. However, ignoring the new harmonised tolerance figures and stick
with the original +/-10% figure (you never know), let's assume a maximum
rms value of 264v and a perfect sine wave. This gives a maximum peak
value of 373.333v for the mains supply.

Turning to the genset, if it's an old fashioned 'direct from the
alternator output terminals' Dodo type with 'fancy' AVR control of the
field winding current, I've seen these over-volt in response to modest
capacitive loads to well north of the 270v mark (275 to 280 volts rms[2])
so to take a really conservative view, we need to assume a 280v rms
maximum (for a nominal 230v rms output genset). Furthermore, we'd best
assume a perfect sine wave to get 'worst case' figures, which gives a
peak value in this case, of 395.960 volts. Let's round this up to 400v
for a really pessimistic worst case value.

In the case of an inverter genset, typically calibrated to produce a
precise and perfect 50Hz nominal 230v rms sine wave output (232 and 233
volts on a couple of the better version of Lidl's recent Parkside
inverter genset offerings according to one of my plug in energy monitors)
the peak voltage will be 329.50v, assuming it remains fault free.
However, since the multi-pole three phase 'Y' connected flywheel
alternator feeds 400v peaks into the 6 diode full wave bridge rectifier
on the inverter module with its 450v rated 330µF smoothing cap to power
the inverter module (effectively a pair of class D amps in bridge output
mode), there remains a very small risk that an inverter module fault
could result in voltage peaks of 400 to 450 volts appearing on the
genset's output socket under no to very light loading, so whilst we're
considering worst case scenario voltages, we'd better assume at the
least, a peak of 400v as in the Dodo class generator case (preferably
450v).

Since, for the sake of safety, we assume a worse possible case for a
230v 50Hz inverter genset of 450v peak voltage, we may as well round this
up to 500v maximum peak and whilst we're at it, do the same for the mains
supply and round up not to a mere 400v but all the way to 500v. This then
gives us a target isolating change over switch contacts peak voltage
rating of 1KV or more.

In the overall scheme of switch contact voltage ratings, 1KV peak is not
an awful lot more than the rather marginal 700v peak best case scenario
rating. However, since switch contact voltage ratings are given in terms
of RMS values, the above voltages correspond to 707 and 500v rms
respectively. In practice, a 600v rms rated switch, with its own built in
safety margin should suffice as a generator/utility transfer/isolating
switch, especially if we assume a 400 and 450 volt peak for mains and
genset respectively (a total peak value of 850 volts - 601v rms). :-)

When I was planning on diverting the two lighting circuits over to genset
power, I was going to use a couple of standard 10A rated c/o light
switches. Unfortunately (or perhaps fortunately in this case!), I ran
into an insurmountable problem with the 2.8KVA PowerCraft Dodo genset I'd
purchased from Aldi a decade ago[3] and the APC SmartUPS2000 I was using
to feed my "Protected Supply" sockets scattered around the house, so
never got as far as actually wiring anything up. Just as well since the
ordinary light switch plates I'd bought were only rated for 250vac and
these needed to have a 600vac rating for their intended purpose.

My plan had been to take a 3A fused feed from the genset to the two
lighting circuit change over switches and power any other kit from the
existing "Protected Supply" sockets (TV, fridge, freezer, CH mains feed
as well as the existing IT kit already plugged in). This way, I'd save
placing the lighting load onto the SmartUPS2000's protected supply. The
genset was powerful enough to use it this way (2.5KVA cont./2.8KVA surge).

My current plan with the Lidl inverter genset is to now feed the
lighting circuits (via 600vac rated change over switches) from the
"Protected Supply" since it has a higher capability than the 1KVA
inverter genset feeding it. Back then, some 8 or 9 years ago, I still had
a lot of incandescent and CFL GLS lamps with not an LED to be seen since
the more efficient than a CFL LED hadn't yet been invented/marketed.

Back then, even with most of the GLS lamps being CFLs, the total
lighting load, all lights ablaze, would have been just shy of the 1200W
mark. Today, including 140 watt's worth of 12v 35W downlighters in the
shower room, it now only comes to 525W of which only some 150 to 180
watt's worth would typically be kept switched on each evening. It now
looks like such a small inverter generator will keep the essentials,
including a few essential luxuries, powered up during a protracted
outage. It's a little bit marginal for my liking but it may prove good
enough to ride out a severe outage with some hands on management to keep
the chest freezer from defrosting.

With regard to the issue of earthing and dealing with floating inverter
output terminals, I took the pragmatic approach (we're on a TNC setup
that uses the steel armouring as the sub-station earth connection) by
using a gutted plug in filter to bond the generator neutral and earth
terminals to the house earth and neutral via a ring main socket adjacent
to the one used to power the SmartUPS2000 so that it's merely a case of
transferring the UPS plug from the adjacent mains socket into the adapted
filter block socket. The live pin in the adapted filter block remains
disconnected with the corresponding live pin socket connected to the live
feed from the generator connection.

This does rather rely upon whatever caused the power outage not being a
disconnected earth and neutral between the cut out and the sub-station
connection whilst leaving the live intact, luckily a fairly improbable,
if not altogether impossible, fault occurrence. :-)

As for that discrete earthing terminal on all portable generators, one
excellent reason for using it with an independent earthing rod, even when
earth resistance values of hundreds of ohms are the best you can hope
for, is that it provides an anti-static earthing connection to reduce
accidental ignition during fuelling operations with petrol/gasoline
generators.

I can only recall seeing this specific mention of the anti-static
earthing precaution once in all of the many user guides I've read in
recent years. IME, the earthing pin(s) in the 13A socket(s) is(are) never
cross bonded internally to the pin(s) designated as the neutral. It seems
this is a decision left entirely to the end user's discretion. TBH, I'm
not entirely sure whether the 13A socket earth pin is actually bonded to
the generator chassis. I must test this sometime soon before relying upon
assumption alone.

[1] I've observed (and I appear to not be alone in such observations)
that the UK mains supply waveform approximates to a slightly flat topped
sine wave where the flat top effect shows a slight negative down-slope on
the positive peaks and vice versa the negative peaks. Consequently, this
means that the peak voltage in practice is a little less than theory
predicts.

[2] When the much vaunted "AVR" of a Dodo generator is completely
overwhelmed by the effect of capacitive loading inducing 'wild
excitation' into the rotor, the no load sine wave shape appears to be
retained with the capacitor acting as a filter to mute the slot noise
that typically pollutes the output waveform of such generator heads. I
suspect that the actual peak value will be a better match to the
theoretical peak value than in the mains voltage supply case.

[3] A whole decade ago! How time flies! No wonder it took me so long to
track down a now ancient posting to alt.energy.homepower on the subject
of generator/UPS compatibility issues way back in June 2010 just to
confirm how far back it had been when I first embarked upon that ill
fated generator UPS backup upgrade.

Now, at long last, I'm ready to start looking for a couple of 600vac
rated 5 or 10 amp change-over switches to implement the lighting circuit
transfer switching circuit. :-)

--
Johnny B Good
  #7   Report Post  
Posted to uk.d-i-y
external usenet poster
 
Posts: 12,364
Default Standby generators and PME

On Monday, 28 May 2018 00:18:33 UTC+1, Johnny B Good wrote:
On Sun, 27 May 2018 05:55:32 -0700, tabbypurr wrote:
On Sunday, 27 May 2018 13:07:31 UTC+1, Roger Hayter wrote:


I brief thought experiment involving connecting a generator frame and
neutral output to an earthing stake (about 100ohm if lucky) and then
opening the main service isolating switch to the house and connecting
the house electrics to the generator leads to the possibility, with an
external neutral fault in the supply system, the generator live being
up to 750 peak wrt real earth. Is this a danger that should be
prevented, and if so, how? It would seem to involve isolating the
house protective earth from the utility supply while the generator was
connected?


The point of multi-point earthing is to stop the house earth connection
going live. It does happen, but the risk is low and accepted.

240v rms is 330v pk so 660v pk on the live in the most exceptional
circumstances. Not much of a risk, and dwarfed by what else would be
going on.


If you must assume a worst case scenario,


I don't

let's at least get the basic
calculations right. :-)


I did. The problem with your worst case calc is it's based on a string of highly improbably events all occurring at once. So improbable that I wonder if it's ever occurred in the UK. Which makes it fairly immaterial.


NT
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
PME break in neutral and RCDs Roger Hayter[_2_] UK diy 8 October 16th 17 07:58 PM
PME and M30+OSN Buttons UK diy 4 April 10th 17 08:16 AM
Split load CU and PME ? Nick UK diy 2 October 19th 05 01:29 PM
Neutral Fault on a PME system Keith UK diy 25 November 1st 04 10:22 PM
PME system / mods nick smith UK diy 1 August 31st 04 12:33 PM


All times are GMT +1. The time now is 06:52 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"