UK diy (uk.d-i-y) For the discussion of all topics related to diy (do-it-yourself) in the UK. All levels of experience and proficency are welcome to join in to ask questions or offer solutions.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
John Wakefield
 
Posts: n/a
Default RCD configuration

I've read that current practice is to use several RCDs in a domestic
installation. A time delayed 100mA RCD to protect the whole installation and
30mA RCDs for sockets, outside wiring etc. My question is why can't the main
RCD be set at a safer 30mA sensitivity since it's time delay should prevent
it from tripping before any other ones?
Also if you install a garage unit with a 30mA RCD on an installation which
is protected by another 30mA RCD at the CU, which one trips if an earth
fault occurs?


  #2   Report Post  
Chris Oates
 
Posts: n/a
Default RCD configuration


"John Wakefield" wrote in message
...
I've read that current practice is to use several RCDs in a domestic
installation. A time delayed 100mA RCD to protect the whole installation

and
30mA RCDs for sockets, outside wiring etc. My question is why can't the

main
RCD be set at a safer 30mA sensitivity since it's time delay should

prevent
it from tripping before any other ones?

Time delay 30ma is a rare beast & it's possible these days for there to be
enough cummulative (but normal) leakage in a system to make it a nuisance.
Whole installation RCDs are to protect against fire not human contact.

Also if you install a garage unit with a 30mA RCD on an installation which
is protected by another 30mA RCD at the CU, which one trips if an earth
fault occurs?

Indeterminate.


  #3   Report Post  
ARWadsworth
 
Posts: n/a
Default RCD configuration



I've read that current practice is to use several RCDs in a domestic
installation. A time delayed 100mA RCD to protect the whole installation


Only on certain types of electrical supply. Look at the FAQ.

and
30mA RCDs for sockets, outside wiring etc. My question is why can't the

main
RCD be set at a safer 30mA sensitivity since it's time delay should

prevent
it from tripping before any other ones?


There are many whole house 30mA RCDs in use and they cause a lot of trouble

Time delay 30ma is a rare beast & it's possible these days for there to be
enough cummulative (but normal) leakage in a system to make it a nuisance.
Whole installation RCDs are to protect against fire not human contact.


I thought MCBs protect against fire (overload protection) and RCDs are for
human protection


Also if you install a garage unit with a 30mA RCD on an installation

which
is protected by another 30mA RCD at the CU, which one trips if an earth
fault occurs?

Indeterminate.


And a garage should not be wired in this way.
--
Adam




  #4   Report Post  
 
Posts: n/a
Default RCD configuration

In uk.d-i-y, ARWadsworth wrote:
Whole installation RCDs are to protect against fire not human contact.


I thought MCBs protect against fire (overload protection) and RCDs are for
human protection

Both of these shorthand formulations have the potential to mislead. The
specific reason for putting in 100mA RCDs on TT installations (those where
the electricity company provides no earth, and there's a local earth rod)
is to kill the power in the event of a fault-to-earth quickly enough.
The reasoning goes like this: with a good, i.e. low-resistance, path to
earth in the case of a fault-to-earth, a big enough current will flow to
cause any fuse or MCB to blow/break in a Short time to avoid the voltage
on nominally "earthed" equipment being elevated for Too Long a time.
"Short" and its kissing-cousin "Too Long" are defined quite precisely
in the Regs, with the two most relevant times being 5 seconds for fixed
stuff (lighting circs, immersions, cookers) and 0.4s for socket circs -
'cuz hand-held stuff gets plugged in to those. For low-resistance
earth paths, quite enough of a current flies through the fault path to
blow the protective devices in good time; for installations relying only
on a local earth rod, the earth impedance may be too high and variable
according to soil conditions to be reliable. So you stick an earth-leakage
protection device in to assure disconnection times even with a sometimes-
too-high earth rod resistance.

There *is* a fire/cable-heating aspect to these disconnection times: while
there's a fault current flowing, it's massively more than the current
which the earth conductor (that's the Circuit Protective Conductor in
carefully-correct current terminology) could ever carry for a Sustained
Time. Again, the Tables in the Regs - based on the known resistance of
copper cables - account for this quite carefully (i.e. it's not just a
handwave, there's a quite detailed model of how much temperature rise
will happen, incorporating the eminently reasonable assumption that none
of this heat can get out of the cable in the short times we're considering).
If the fault current were to last too long, the cable would be dangerous
for future use (e.g. insulation would've got soft and conductors would
touch or nearly-touch which are supposed to be kept apart by that
insulation) - long before the cable actually Catches Fire in the manner
beloved by Hollywood special-effects people! The Tables also account for
how hot different cable types can safely get while carrying such fault
currents - so, for example, at two extremes of that range are normal PVC
cables (insulation gets unacceptably soft at, what, 90 degrees C?) versus
MICC cables (bare copper live-and-neutral conductors bedded in a mineral
insulation, copper sheath on the outside as the earth, often seen surface-run
in churches and other buildings where you have to surface-run and want
cables as thin and un-ugly as possible: a Win for these calculations both
because the mineral insulation doesn't go soft at wimpy temperatures like
mere water-boiling-point, and because the earth conductor is of bigger
cross-sectional area in these cables than the live conductor).

So: the disconnection time is what the ELCB is there to assure. The
disconnection time in turn is important for two reasons: one, to limit
the duration of the exposure of any person to higher-than-earth voltages
on anything nominally "earthed"; and secondly, to limit the time during
which cables have to carry fault current.

Hope that helps some - Stefek
  #5   Report Post  
Andrew
 
Posts: n/a
Default RCD configuration

My guess would be if three are 3 other sub rcd in the house with a 30ma
sensitivity and a 11 ma leakage each then the main rcd would always trip.
only a guess but plausible.


Andrew

John Wakefield wrote:
I've read that current practice is to use several RCDs in a domestic
installation. A time delayed 100mA RCD to protect the whole installation and
30mA RCDs for sockets, outside wiring etc. My question is why can't the main
RCD be set at a safer 30mA sensitivity since it's time delay should prevent
it from tripping before any other ones?
Also if you install a garage unit with a 30mA RCD on an installation which
is protected by another 30mA RCD at the CU, which one trips if an earth
fault occurs?





  #6   Report Post  
Dave Liquorice
 
Posts: n/a
Default RCD configuration

On Sun, 19 Oct 2003 09:23:30 +0100, John Wakefield wrote:

My question is why can't the main RCD be set at a safer 30mA
sensitivity since it's time delay should prevent it from tripping
before any other ones?


Because 30mA isn't very much leakage current, modern appliances with
SMPSUs and other things with suppression components "leak" to earth
quite a bit. ISTR that you shouldn't have more than 10 such
appliancies on a ordinary 30mA RCD because of the leakage level
causing nusiance trips.

Only certain types of installation need a 100mA time delayed whole
house RCD. An 100mA delayed RCD is required when the earth loop
impedance is (or maybe) to high to allow large enough fault currents
to flow enabling the protective devices (fuses or MCBs) to disconnect
in the required times.

Also if you install a garage unit with a 30mA RCD on an installation
which is protected by another 30mA RCD at the CU, which one trips if
an earth fault occurs?


Already been said "indeterminate". But the garage should be fed from
it's own MCB and RCD at the CU not just be part of one of the houses
RCD protected ring mains.

--
Cheers
Dave. pam is missing e-mail



Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT +1. The time now is 06:04 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"