Home Repair (alt.home.repair) For all homeowners and DIYers with many experienced tradesmen. Solve your toughest home fix-it problems.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
 
Posts: n/a
Default A Spencerator

A fridge can be a large winter load for an off-grid PV house...

NREL says the average daily November temp in Massena NY is 35.3 F, with an
average daily min of 27.7. December has 20.2 F and an 11.7 min. January has
14.3 and 4.3. February has 16.5 and 6.5. March has 28.3 and a 19.1 F min.

A 2'x2'x8' tall R20 34 F fridge in a 70 F room needs (70-34)80ft^2/R20 = 136
Btu/h or 3456 Btu/day of coolth, or 17,280 Btu for 5 days, which might come
from at least 17280/144 = 120 pounds of ice in an outdoor box, with a large
water tray with a copper pipe in the freezer compartment, with free airflow
to the fridge below and a liquid thermosyphoning loop to move coolth in from
the box. Can the loop stop working before it freezes the fridge contents?

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with 100
2 liter water bottles surrounded by an antifreeze solution thermosyphoning
through an old 800 Btu/h-F auto radiator above with an 8' chimney above.
Cold air might enter the radiator and flow out at the top of the chimney.

With 800 Btu/h-F of conductance from 32 F water to outdoor air at temp T,
(32-T)800 = 3456 Btu makes T = 32-3456/800 = 27.7 for 1-hour per day cooling
and T = 32-3456/1600 = 29.8 for 2-hour cooling, and so on.

The crude TMY2 (Typical Meteorological Year) simulation below indicates
that a fridge like this could work for 241 days (2/3) of a typical year
in Massena, from September 23 through May 22...

Nick

This program makes a "fridge" prep file with
the month, day, hour, and dry bulb temp...

10 SCREEN 9:KEY OFF:CLS
40 LINE (0,0)-(639,349),,B:XDF=.073:YDF=2.92
50 FOR TR= 20 TO 40 STEP 10'temp ref lines
60 LINE (0,349-YDF*(TR+20))-(639,349-YDF*(TR+20)):NEXT
70 OPEN "94725.tm2" FOR INPUT AS #1'NREL TMY2 file name (Massena)
80 OPEN "fridge" FOR OUTPUT AS #2
90 LINE INPUT#1,S$'read header
100 CITY$=MID$(S$,8,25)
110 LAT=VAL(MID$(S$,40,2))+VAL(MID$(S$,43,2))/60
120 LON=VAL(MID$(S$,48,3))+VAL(MID$(S$,52,2))/60
130 PRINT#2,CITY$,LAT,LON
140 FOR H=1 TO 8760'hour of year
150 LINE INPUT#1,S$
160 MONTH=VAL(MID$(S$,4,2))'month of year (1-12)
170 DAY=VAL(MID$(S$,6,2))'day of month
180 HOUR=VAL(MID$(S$,8,2))-.5'hour of day
190 N=1+H/24'day of year (1 to 365)
200 TDB=VAL(MID$(S$,68,4))*.18+32'dry bulb temp (F)
230 PSET(XDF*H,349-YDF*(TDB+20))
470 PRINT#2,MONTH;DAY;HOUR;TDB
480 IF DAY=1 AND HOUR=.5 THEN LINE (XDF*H,349)-(XDF*H,345)'tick months
490 NEXT H

Here's the start of the fridge file...

MASSENA NY 44.93334 74.85
1 1 .5 24.98
1 1 1.5 24.98
1 1 2.5 24.98
1 1 3.5 26.06
1 1 4.5 26.06
1 1 5.5 19.94
1 1 6.5 15.98
1 1 7.5 10.94
1 1 8.5 8.959999
1 1 9.5 6.979999
1 1 10.5 6.979999
1 1 11.5 6.079999
1 1 12.5 6.079999
1 1 13.5 6.079999
1 1 14.5 6.979999
1 1 15.5 6.979999
1 1 16.5 6.079999
1 1 17.5 1.939999
1 1 18.5 -2.020001
1 1 19.5 -2.920002
1 1 20.5 -4.000002
1 1 21.5 -4.000002
1 1 22.5 -.9400013
1 1 23.5 -.9400013
.....

This program simulates a typical year...

10 SCREEN 9:KEY OFF:CLS
20 DAYSTART=0'display start time (days)
30 DS=DAYSTART*24'display start time (hours)
40 RANGE=8760'display range (hours)
50 LINE (0,0)-(639,349),,B:XDF=640/RANGE:YDF=2.69
60 FOR TR=-30 TO 30 STEP 10'temp ref lines
70 LINE (0,349-YDF*(TR+30))-(639,349-YDF*(TR+30)):NEXT
80 OPEN "fridge" FOR INPUT AS #1:LINE INPUT#1,H$
90 FOR H=1 TO 8760'hours of typical (TMY2) year
100 INPUT#1,MONTH,DAY,HOUR,TDB'read fridge file
110 IF TDBTMIN THEN TMIN=TDB'find min temp (F)
120 PSET(XDF*(H-DS),349-YDF*(TDB+30))'plot outdoor temp (F)
130 IF TDB32 THEN ICE=ICE+(32-TDB)*800 ELSE ICE=ICE-136'ice amount (Btu)
140 IF ICE0 THEN ICE=0'lower ice limit (Btu)
150 IF ICE144*440 THEN ICE=144*440'upper ice limit (Btu)
160 IF ICE0 THEN LINE (XDF*(H-DS),340)-(XDF*(H-DS),330):ICEH=ICEH+1'ice hours
170 IF DAY=1 AND HOUR=.5 THEN LINE (XDF*(H-DS),349)-(XDF*(H-DS),345)'months
180 NEXT H
190 CLOSE #1
200 PRINT TMIN,ICEH
210 END

Min yearly Hours
temp (F) with ice

-25.96 5468

  #2   Report Post  
p j m@see _my _sig _for_address.com
 
Posts: n/a
Default

Do you ever get tired of fantasizing your incredibly stupid
and incorrect ideas of how reality works , Nick ? And inventing
numbers to 'prove' your lunacies ?

On 28 Feb 2005 15:30:51 -0500, wrote:

A fridge can be a large winter load for an off-grid PV house...

NREL says the average daily November temp in Massena NY is 35.3 F, with an
average daily min of 27.7. December has 20.2 F and an 11.7 min. January has
14.3 and 4.3. February has 16.5 and 6.5. March has 28.3 and a 19.1 F min.

A 2'x2'x8' tall R20 34 F fridge in a 70 F room needs (70-34)80ft^2/R20 = 136
Btu/h or 3456 Btu/day of coolth, or 17,280 Btu for 5 days, which might come
from at least 17280/144 = 120 pounds of ice in an outdoor box, with a large
water tray with a copper pipe in the freezer compartment, with free airflow
to the fridge below and a liquid thermosyphoning loop to move coolth in from
the box. Can the loop stop working before it freezes the fridge contents?

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with 100
2 liter water bottles surrounded by an antifreeze solution thermosyphoning
through an old 800 Btu/h-F auto radiator above with an 8' chimney above.
Cold air might enter the radiator and flow out at the top of the chimney.

With 800 Btu/h-F of conductance from 32 F water to outdoor air at temp T,
(32-T)800 = 3456 Btu makes T = 32-3456/800 = 27.7 for 1-hour per day cooling
and T = 32-3456/1600 = 29.8 for 2-hour cooling, and so on.

The crude TMY2 (Typical Meteorological Year) simulation below indicates
that a fridge like this could work for 241 days (2/3) of a typical year
in Massena, from September 23 through May 22...

Nick

This program makes a "fridge" prep file with
the month, day, hour, and dry bulb temp...

10 SCREEN 9:KEY OFF:CLS
40 LINE (0,0)-(639,349),,B:XDF=.073:YDF=2.92
50 FOR TR= 20 TO 40 STEP 10'temp ref lines
60 LINE (0,349-YDF*(TR+20))-(639,349-YDF*(TR+20)):NEXT
70 OPEN "94725.tm2" FOR INPUT AS #1'NREL TMY2 file name (Massena)
80 OPEN "fridge" FOR OUTPUT AS #2
90 LINE INPUT#1,S$'read header
100 CITY$=MID$(S$,8,25)
110 LAT=VAL(MID$(S$,40,2))+VAL(MID$(S$,43,2))/60
120 LON=VAL(MID$(S$,48,3))+VAL(MID$(S$,52,2))/60
130 PRINT#2,CITY$,LAT,LON
140 FOR H=1 TO 8760'hour of year
150 LINE INPUT#1,S$
160 MONTH=VAL(MID$(S$,4,2))'month of year (1-12)
170 DAY=VAL(MID$(S$,6,2))'day of month
180 HOUR=VAL(MID$(S$,8,2))-.5'hour of day
190 N=1+H/24'day of year (1 to 365)
200 TDB=VAL(MID$(S$,68,4))*.18+32'dry bulb temp (F)
230 PSET(XDF*H,349-YDF*(TDB+20))
470 PRINT#2,MONTH;DAY;HOUR;TDB
480 IF DAY=1 AND HOUR=.5 THEN LINE (XDF*H,349)-(XDF*H,345)'tick months
490 NEXT H

Here's the start of the fridge file...

MASSENA NY 44.93334 74.85
1 1 .5 24.98
1 1 1.5 24.98
1 1 2.5 24.98
1 1 3.5 26.06
1 1 4.5 26.06
1 1 5.5 19.94
1 1 6.5 15.98
1 1 7.5 10.94
1 1 8.5 8.959999
1 1 9.5 6.979999
1 1 10.5 6.979999
1 1 11.5 6.079999
1 1 12.5 6.079999
1 1 13.5 6.079999
1 1 14.5 6.979999
1 1 15.5 6.979999
1 1 16.5 6.079999
1 1 17.5 1.939999
1 1 18.5 -2.020001
1 1 19.5 -2.920002
1 1 20.5 -4.000002
1 1 21.5 -4.000002
1 1 22.5 -.9400013
1 1 23.5 -.9400013
....

This program simulates a typical year...

10 SCREEN 9:KEY OFF:CLS
20 DAYSTART=0'display start time (days)
30 DS=DAYSTART*24'display start time (hours)
40 RANGE=8760'display range (hours)
50 LINE (0,0)-(639,349),,B:XDF=640/RANGE:YDF=2.69
60 FOR TR=-30 TO 30 STEP 10'temp ref lines
70 LINE (0,349-YDF*(TR+30))-(639,349-YDF*(TR+30)):NEXT
80 OPEN "fridge" FOR INPUT AS #1:LINE INPUT#1,H$
90 FOR H=1 TO 8760'hours of typical (TMY2) year
100 INPUT#1,MONTH,DAY,HOUR,TDB'read fridge file
110 IF TDBTMIN THEN TMIN=TDB'find min temp (F)
120 PSET(XDF*(H-DS),349-YDF*(TDB+30))'plot outdoor temp (F)
130 IF TDB32 THEN ICE=ICE+(32-TDB)*800 ELSE ICE=ICE-136'ice amount (Btu)
140 IF ICE0 THEN ICE=0'lower ice limit (Btu)
150 IF ICE144*440 THEN ICE=144*440'upper ice limit (Btu)
160 IF ICE0 THEN LINE (XDF*(H-DS),340)-(XDF*(H-DS),330):ICEH=ICEH+1'ice hours
170 IF DAY=1 AND HOUR=.5 THEN LINE (XDF*(H-DS),349)-(XDF*(H-DS),345)'months
180 NEXT H
190 CLOSE #1
200 PRINT TMIN,ICEH
210 END

Min yearly Hours
temp (F) with ice

-25.96 5468



Paul ( pjm @ pobox . com ) - remove spaces to email me
'Some days, it's just not worth chewing through the restraints.'

HVAC/R program for Palm PDA's
Free demo now available online
http://pmilligan.net/palm/
Free Temperature / Pressure charts for 38 Ref's http://pmilligan.net/pmtherm/
  #3   Report Post  
 
Posts: n/a
Default

p j m of the pulsating rectum rites:

Do you ever get tired of fantasizing your incredibly stupid
and incorrect ideas of how reality works , Nick ? And inventing
numbers to 'prove' your lunacies ?


Nope. What's wrong with this one, in your opinion?

A 2'x2'x8' tall R20 34 F fridge in a 70 F room needs (70-34)80ft^2/R20 = 136
Btu/h or 3456 Btu/day of coolth, or 17,280 Btu for 5 days, which might come
from at least 17280/144 = 120 pounds of ice in an outdoor box, with a large
water tray with a copper pipe in the freezer compartment, with free airflow
to the fridge below and a liquid thermosyphoning loop to move coolth in from
the box. Can the loop stop working before it freezes the fridge contents?

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with 100
2 liter water bottles surrounded by an antifreeze solution thermosyphoning
through an old 800 Btu/h-F auto radiator above with an 8' chimney above.
Cold air might enter the radiator and flow out at the top of the chimney.


A couple of fans and pumps could make it more compact and easier to design,
with more power and cost and less reliability. Still practical, but less fun.

Nick

  #4   Report Post  
Steve Spence
 
Posts: n/a
Default

What is so stupid and incorrect? Or is it you just don't understand it.....

Steve Spence
Dir., Green Trust
http://www.green-trust.org

p j m@see _my _sig _for_address.com wrote:
Do you ever get tired of fantasizing your incredibly stupid
and incorrect ideas of how reality works , Nick ? And inventing
numbers to 'prove' your lunacies ?

On 28 Feb 2005 15:30:51 -0500, wrote:


A fridge can be a large winter load for an off-grid PV house...

NREL says the average daily November temp in Massena NY is 35.3 F, with an
average daily min of 27.7. December has 20.2 F and an 11.7 min. January has
14.3 and 4.3. February has 16.5 and 6.5. March has 28.3 and a 19.1 F min.

A 2'x2'x8' tall R20 34 F fridge in a 70 F room needs (70-34)80ft^2/R20 = 136
Btu/h or 3456 Btu/day of coolth, or 17,280 Btu for 5 days, which might come


from at least 17280/144 = 120 pounds of ice in an outdoor box, with a large


water tray with a copper pipe in the freezer compartment, with free airflow
to the fridge below and a liquid thermosyphoning loop to move coolth in from
the box. Can the loop stop working before it freezes the fridge contents?

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with 100
2 liter water bottles surrounded by an antifreeze solution thermosyphoning
through an old 800 Btu/h-F auto radiator above with an 8' chimney above.
Cold air might enter the radiator and flow out at the top of the chimney.

With 800 Btu/h-F of conductance from 32 F water to outdoor air at temp T,
(32-T)800 = 3456 Btu makes T = 32-3456/800 = 27.7 for 1-hour per day cooling
and T = 32-3456/1600 = 29.8 for 2-hour cooling, and so on.

The crude TMY2 (Typical Meteorological Year) simulation below indicates
that a fridge like this could work for 241 days (2/3) of a typical year
in Massena, from September 23 through May 22...

Nick

This program makes a "fridge" prep file with
the month, day, hour, and dry bulb temp...

10 SCREEN 9:KEY OFF:CLS
40 LINE (0,0)-(639,349),,B:XDF=.073:YDF=2.92
50 FOR TR= 20 TO 40 STEP 10'temp ref lines
60 LINE (0,349-YDF*(TR+20))-(639,349-YDF*(TR+20)):NEXT
70 OPEN "94725.tm2" FOR INPUT AS #1'NREL TMY2 file name (Massena)
80 OPEN "fridge" FOR OUTPUT AS #2
90 LINE INPUT#1,S$'read header
100 CITY$=MID$(S$,8,25)
110 LAT=VAL(MID$(S$,40,2))+VAL(MID$(S$,43,2))/60
120 LON=VAL(MID$(S$,48,3))+VAL(MID$(S$,52,2))/60
130 PRINT#2,CITY$,LAT,LON
140 FOR H=1 TO 8760'hour of year
150 LINE INPUT#1,S$
160 MONTH=VAL(MID$(S$,4,2))'month of year (1-12)
170 DAY=VAL(MID$(S$,6,2))'day of month
180 HOUR=VAL(MID$(S$,8,2))-.5'hour of day
190 N=1+H/24'day of year (1 to 365)
200 TDB=VAL(MID$(S$,68,4))*.18+32'dry bulb temp (F)
230 PSET(XDF*H,349-YDF*(TDB+20))
470 PRINT#2,MONTH;DAY;HOUR;TDB
480 IF DAY=1 AND HOUR=.5 THEN LINE (XDF*H,349)-(XDF*H,345)'tick months
490 NEXT H

Here's the start of the fridge file...

MASSENA NY 44.93334 74.85
1 1 .5 24.98
1 1 1.5 24.98
1 1 2.5 24.98
1 1 3.5 26.06
1 1 4.5 26.06
1 1 5.5 19.94
1 1 6.5 15.98
1 1 7.5 10.94
1 1 8.5 8.959999
1 1 9.5 6.979999
1 1 10.5 6.979999
1 1 11.5 6.079999
1 1 12.5 6.079999
1 1 13.5 6.079999
1 1 14.5 6.979999
1 1 15.5 6.979999
1 1 16.5 6.079999
1 1 17.5 1.939999
1 1 18.5 -2.020001
1 1 19.5 -2.920002
1 1 20.5 -4.000002
1 1 21.5 -4.000002
1 1 22.5 -.9400013
1 1 23.5 -.9400013
....

This program simulates a typical year...

10 SCREEN 9:KEY OFF:CLS
20 DAYSTART=0'display start time (days)
30 DS=DAYSTART*24'display start time (hours)
40 RANGE=8760'display range (hours)
50 LINE (0,0)-(639,349),,B:XDF=640/RANGE:YDF=2.69
60 FOR TR=-30 TO 30 STEP 10'temp ref lines
70 LINE (0,349-YDF*(TR+30))-(639,349-YDF*(TR+30)):NEXT
80 OPEN "fridge" FOR INPUT AS #1:LINE INPUT#1,H$
90 FOR H=1 TO 8760'hours of typical (TMY2) year
100 INPUT#1,MONTH,DAY,HOUR,TDB'read fridge file
110 IF TDBTMIN THEN TMIN=TDB'find min temp (F)
120 PSET(XDF*(H-DS),349-YDF*(TDB+30))'plot outdoor temp (F)
130 IF TDB32 THEN ICE=ICE+(32-TDB)*800 ELSE ICE=ICE-136'ice amount (Btu)
140 IF ICE0 THEN ICE=0'lower ice limit (Btu)
150 IF ICE144*440 THEN ICE=144*440'upper ice limit (Btu)
160 IF ICE0 THEN LINE (XDF*(H-DS),340)-(XDF*(H-DS),330):ICEH=ICEH+1'ice hours
170 IF DAY=1 AND HOUR=.5 THEN LINE (XDF*(H-DS),349)-(XDF*(H-DS),345)'months
180 NEXT H
190 CLOSE #1
200 PRINT TMIN,ICEH
210 END

Min yearly Hours
temp (F) with ice

-25.96 5468




Paul ( pjm @ pobox . com ) - remove spaces to email me
'Some days, it's just not worth chewing through the restraints.'

HVAC/R program for Palm PDA's
Free demo now available online
http://pmilligan.net/palm/
Free Temperature / Pressure charts for 38 Ref's http://pmilligan.net/pmtherm/

  #5   Report Post  
daestrom
 
Posts: n/a
Default


wrote in message
...
A fridge can be a large winter load for an off-grid PV house...

NREL says the average daily November temp in Massena NY is 35.3 F, with an
average daily min of 27.7. December has 20.2 F and an 11.7 min. January
has
14.3 and 4.3. February has 16.5 and 6.5. March has 28.3 and a 19.1 F min.

A 2'x2'x8' tall R20 34 F fridge in a 70 F room needs (70-34)80ft^2/R20 =
136
Btu/h or 3456 Btu/day of coolth, or 17,280 Btu for 5 days, which might
come
from at least 17280/144 = 120 pounds of ice in an outdoor box, with a
large
water tray with a copper pipe in the freezer compartment, with free
airflow
to the fridge below and a liquid thermosyphoning loop to move coolth in
from
the box. Can the loop stop working before it freezes the fridge contents?

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with 100
2 liter water bottles surrounded by an antifreeze solution thermosyphoning
through an old 800 Btu/h-F auto radiator above with an 8' chimney above.
Cold air might enter the radiator and flow out at the top of the chimney.

With 800 Btu/h-F of conductance from 32 F water to outdoor air at temp T,
(32-T)800 = 3456 Btu makes T = 32-3456/800 = 27.7 for 1-hour per day
cooling
and T = 32-3456/1600 = 29.8 for 2-hour cooling, and so on.

The crude TMY2 (Typical Meteorological Year) simulation below indicates
that a fridge like this could work for 241 days (2/3) of a typical year
in Massena, from September 23 through May 22...


You may want to look at that data again. I found that as early as April 7,
there are very few hours that get down to 32 F. I counted only 58 hours
between 4/7 and 5/22 (46 days) where temperature was below 32, for a total
of only 231.5 'fridge-degrees hours' (#hours * (32-T)).

Similarly in the fall, from September 23 to October 31, I counted only 68
hours below 32 for a total of 390. 'fridge-degree-hours'.

Frankly, living not far from Massena (I'm ~hour north of Syracuse), I find
it incredible to think that anyone could use this to freeze water reliably
from mid March through to May or from late September through mid November.
Indian-summers, freakish warm spells and all, just make it pretty iffy.
Heck, in mid January we had temperatures in the 50's and 60's for several
days. A 'green Christmas' is a real threat every year.

Your program seems to take credit for any temperature below 32, no matter
how slight. It doesn't consider that at least a slight temperature
difference must exist to circulate the antifreeze. There must be a
temperature difference to create a thermosyphon. And without circulation
you cannot move any btu/h to the barrel.

Using convection, to carry 800 BTU/h from the radiator to the barrel, the
temperature drop across the radiator would have to be 3.2 F if the
thermosyphon develops 0.5 gpm. If you don't get that much flow, it would
take even more delta T to transport 800 BTU/h. So for an *infinite*
radiator, it would still have to be 28.8 at 0.5 gpm of flow to carry 800
btu/h to a 32F sink.

A 50/50 mix of ethylene glycol and water has a density of about 68.27 -
0.01881*T lbm/ft^3 (where T is temperature in F). So a ten foot high
thermosyphon with a 5 degree temperature difference between the two legs
would have 5*0.01881 * 10 = 0.9405 lbf/ft^2 driving head (a mere 0.0065 psi,
or 3/16 inch of water gage). Raise the radiator another 10 feet (20 ft
total) and you can double the driving head for the thermosyphon (but it
doubles the length of piping).

How much flow can you get through 40 ft of large diameter tubing/piping with
0.013 psi driving head? It would have to be about 0.3 gpm to get 800 BTU/h
heat transfer. If not, you can't make '800 BTU' of ice per hour even at 27
F.

In the 'dead of winter' there is plenty of surplus 'fridge-degree days' to
make it work. But the spring and fall become pretty dicey as to just how
long you could keep the fridge cold with changing weather patterns.

daestrom




  #7   Report Post  
 
Posts: n/a
Default

daestrom wrote:

wrote:


NREL says the average daily November temp in Massena NY is 35.3 F, with an
average daily min of 27.7. December has 20.2 F and an 11.7 min. January
has 14.3 and 4.3. February has 16.5 and 6.5. March has 28.3 and a 19.1 F min.


Averages can help predict fuel consumption, altho some days and months and
years are not average...

A 2'x2'x8' tall R20 34 F fridge in a 70 F room needs (70-34)80ft^2/R20 =
136 Btu/h or 3456 Btu/day of coolth...

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with 100
2 liter water bottles surrounded by an antifreeze solution thermosyphoning
through an old 800 Btu/h-F auto radiator above with an 8' chimney above.
Cold air might enter the radiator and flow out at the top of the chimney.

With 800 Btu/h-F of conductance from 32 F water to outdoor air at temp T,
(32-T)800 = 3456 Btu makes T = 32-3456/800 = 27.7 for 1-hour per day
cooling and T = 32-3456/1600 = 29.8 for 2-hour cooling, and so on.

The crude TMY2 (Typical Meteorological Year) simulation below indicates
that a fridge like this could work for 241 days (2/3) of a typical year
in Massena, from September 23 through May 22...


...I found that as early as April 7, there are very few hours that get down
to 32 F. I counted only 58 hours between 4/7 and 5/22 (46 days)... for
a total of only 231.5 'fridge-degrees hours' (#hours * (32-T)).


Well, 231.5x800 = 185,200 Btu, 16% more than the 46 day cooling requirement
of 46x3456 = 158,976 Btu, and this period may have begun with 144x440/3456
= 18 day's worth of perfectly-insulated ice storage.

Your program seems to take credit for any temperature below 32, no matter
how slight...


And ignores coolth collected from air between 32 and 36 F...

It doesn't consider that at least a slight temperature
difference must exist to circulate the antifreeze.


How do low concentrations of antifreeze or salt water thermosyphon when cold?

I figured cold water weighs about 62.67 - 0.003T lb/ft^3, with T in degrees F.
The density difference caused by the temperature difference between up and down
pipes causes a pressure difference proportional to the height of the water
column, making a flow through the resistance of the pipe loop. With 8' of
height and a dT temperature difference, dP = 0.024dT lb/ft^2.

A pipe with radius r and length L in feet and pressure diff dP has laminar
flow Q = Pir^4dP/(8MuL) ft^3/s. Viscosity Mu is 6x10^-7 lb-s/ft^2 at 32 F.
With 16' of 1/2" pipe, 8' up and down, Q = Pi(0.25/12)^4dP/(8x6x10^-7x16')
= 0.0077dP ft^3/s or 1729dT lb/h, which might move 1729dT^2 Btu/h. We might
collect 3917 Btu of coolth in 2 hours with a dT = sqrt(1958/1729) = 1.1 F
thermosyphoning temperature difference, which might be ignored, given the
radiator conductance.

Someone who'd like to try this might do a more accurate simulation or use
a couple of pumps and fans to start with...

Nick

  #8   Report Post  
 
Posts: n/a
Default

Nick Hull wrote:

What I don't understand is why someone short of power would not simply
use a window box or its modern counterpart to reduce power loads.


Too small, no light, poor temp control, no coolth storage, hard to clean,
and a desire to use the fridge they already own for summertime?

I have a dead freezer on my porch that I have little trouble maintaining a
nice refrigerator temperature just by opening & closing the lid at
appropriate times, with a lot of water thermal ballast.


I did that with a stone kitchen with exterior insulation, opening the door
to the rest of the house to keep it about 36 F in the winter. The fridge
rarely ran. My barn fridge gets unplugged from October through March, with
an EH38 "Easy Heat" socket ($10.99 at Lowe's) in series with a 100 W trouble
light in a bottom drawer to keep the carrots and apples from freezing.

Nick

  #11   Report Post  
 
Posts: n/a
Default

Derek Broughton wrote:

...My barn fridge gets unplugged from October through March, with
an EH38 "Easy Heat" socket ($10.99 at Lowe's) in series with a 100 W
trouble light in a bottom drawer to keep the carrots and apples from
freezing.


Unlike water, they don't actually freeze at 32 F...

What's the actual power draw on an Easy Heat socket (whatever that is) in
series with a 100W bulb?


The socket is a thermostat that turns on the 100 W bulb when the air
near it is less than 38 F, so it uses 0 W when off and 100 W when on.
I've never measured the energy usage.

It sounds like at best a zero-sum game - a quick look at Canadian Energuide
ratings shows small refrigerators to be using less than 1.5 kWh daily, so
your heating appliance needs to be using less than 50W.


....1.5kWh/24h = 62.5 W, but it probably uses less, on a continuous basis.
The fridge might have 80 ft^2/R10 = 8 Btu/h-F of conductance. January
is the coldest month in Phila, averaging 30.4 F. The unheated barn tends
to average daily temp swings. The trouble light is in a drawer with a few
1 liter water bottles under some fiberglass insulation, so it keeps the
fridge just above freezing. In January, it might supply 24h(32-30.4)8
= 307 Btu/day, using 307/3412 = 0.09 kWh, ie 3.75 W on a continuous basis,
ie 17X less than a fridge in a warm room. It seldom comes on in February
(average 33.0) or March (average 42.4.)

With some rewiring, the fridge might use its own light near the top of
the box for heat, with the fan running without the compressor whenever
the light is on to distribute warmer air near the lower part of the box.

Nick

  #12   Report Post  
daestrom
 
Posts: n/a
Default


wrote in message
...
daestrom wrote:

wrote:


NREL says the average daily November temp in Massena NY is 35.3 F, with
an
average daily min of 27.7. December has 20.2 F and an 11.7 min. January
has 14.3 and 4.3. February has 16.5 and 6.5. March has 28.3 and a 19.1 F
min.


Averages can help predict fuel consumption, altho some days and months and
years are not average...

A 2'x2'x8' tall R20 34 F fridge in a 70 F room needs (70-34)80ft^2/R20 =
136 Btu/h or 3456 Btu/day of coolth...

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with
100
2 liter water bottles surrounded by an antifreeze solution
thermosyphoning
through an old 800 Btu/h-F auto radiator above with an 8' chimney above.
Cold air might enter the radiator and flow out at the top of the
chimney.

With 800 Btu/h-F of conductance from 32 F water to outdoor air at temp
T,
(32-T)800 = 3456 Btu makes T = 32-3456/800 = 27.7 for 1-hour per day
cooling and T = 32-3456/1600 = 29.8 for 2-hour cooling, and so on.

The crude TMY2 (Typical Meteorological Year) simulation below indicates
that a fridge like this could work for 241 days (2/3) of a typical year
in Massena, from September 23 through May 22...


...I found that as early as April 7, there are very few hours that get
down
to 32 F. I counted only 58 hours between 4/7 and 5/22 (46 days)... for
a total of only 231.5 'fridge-degrees hours' (#hours * (32-T)).


Well, 231.5x800 = 185,200 Btu, 16% more than the 46 day cooling
requirement
of 46x3456 = 158,976 Btu, and this period may have begun with 144x440/3456
= 18 day's worth of perfectly-insulated ice storage.

Your program seems to take credit for any temperature below 32, no matter
how slight...


And ignores coolth collected from air between 32 and 36 F...

It doesn't consider that at least a slight temperature
difference must exist to circulate the antifreeze.


How do low concentrations of antifreeze or salt water thermosyphon when
cold?

I figured cold water weighs about 62.67 - 0.003T lb/ft^3, with T in
degrees F.


You mentioned glycol, so assuming a 50/50 mix, the density change is more
like 0.01884 lb/ft^3-F. This helps since water actually gets denser as it
warms up in this temperature range (you can *not* thermosyphon plain water
from 32 to 39 F). Even weak solutions aren't very helpful, using just 10%
glycol would give you about 0.001 lb/ft^3-F. A bit of a trade off, higher
mixtures give better density change per degree, but hurt viscosity and heat
capacitance. Probably for a given operating temperture, an 'optimum'
mixture could be determined.

The density difference caused by the temperature difference between up and
down
pipes causes a pressure difference proportional to the height of the water
column, making a flow through the resistance of the pipe loop. With 8' of
height and a dT temperature difference, dP = 0.024dT lb/ft^2.


More like dP = 0.01884dT * H, for dP = 0.15072dT for 50/50 glycol mix
running 8'.


A pipe with radius r and length L in feet and pressure diff dP has laminar
flow Q = Pir^4dP/(8MuL) ft^3/s. Viscosity Mu is 6x10^-7 lb-s/ft^2 at 32 F.
With 16' of 1/2" pipe, 8' up and down, Q = Pi(0.25/12)^4dP/(8x6x10^-7x16')
= 0.0077dP ft^3/s or 1729dT lb/h,


No Way!!!

Check some references, viscosity of water is more like 3.7x10^-5 lbf-s/ft^2
at 32 F (about 1.8 centipoise). Since your number is about 1/32 of the
right value, I suspect your's is missing a 'g sub c' division or something
(slugs??) (damned imperial units ;-).

50/50 glycol is much worse, about 1.88x10^-3 lbf-s/ft^2 (about 9
centipoise). For laminar flow in straight pipe, I use Q =
dP*(d^4)/(.000273*mu*L) (Q in gpm, dP in psi, d in inches, mu in centipoise
and L in ft) (Crane TP 410 pg 3-2). That gives Q = (0.15072/144 * dT)
*(.5^4)/ (.000273*9*16) for about .001664dT gpm for 50/50 glycol.

50/50 glycol is about 0.746 BTU/lbm-F so you would get
0.001664*dT*9*0.746*60 BTU/hr or 0.67 BTU/hr /F. Replace the 1/2 pipe with
2" (always good idea to use large diameter pipe with thermosyphoning :-) and
you can get about 171 BTU/hr/F. At that, you would need about 4.7 F delta T
to get your target 800 BTU/hr.

daestrom


  #13   Report Post  
 
Posts: n/a
Default

daestrom wrote:

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with
100 2 liter water bottles surrounded by an antifreeze solution
thermosyphoning through an old 800 Btu/h-F auto radiator above with
an 8' chimney above. Cold air might enter the radiator and flow out
at the top of the chimney.

With 800 Btu/h-F of conductance from 32 F water to outdoor air at temp T,
(32-T)800 = 3456 Btu makes T = 32-3456/800 = 27.7 for 1-hour per day
cooling and T = 32-3456/1600 = 29.8 for 2-hour cooling, and so on.


With a radiator pump and fan and a differential thermostat and a fridge pump
and a fridge thermostat and a compact ice box with the drum on the ground.
All low power stuff, but can we omit some? What's a good compromise?

The radiator might have a chimney, and it might stay primed for a long time,
with both supply and return pipes underwater, and the fridge loop might stop
working before it freezes the fridge...

How do antifreeze or salt water thermosyphon when cold?

I figured cold water weighs about 62.67 - 0.003T lb/ft^3...


You mentioned glycol, so assuming a 50/50 mix, the density change is more
like 0.01884 lb/ft^3-F...


Hey, 6X better for thermosyphoning :-)

Even weak solutions aren't very helpful, using just 10% glycol would give
about 0.001 lb/ft^3-F. A bit of a trade off, higher mixtures give better
density change per degree, but hurt viscosity and heat capacitance.
Probably for a given operating temperture, an 'optimum' mixture could be
determined.


....50/50 sounds good, if the viscosity doesn't increase much. We might
not care much what happens much below 32 F, when all the water bottles
are frozen. Do we need water bottles, vs slush?

The density difference caused by the temperature difference between up and
down pipes causes a pressure difference proportional to the height of the
water column, making a flow through the resistance of the pipe loop. With
8' of height and a dT temperature difference, dP = 0.024dT lb/ft^2.


...dP = 0.01884dT * H, for dP = 0.15072dT for 50/50 glycol mix running 8'.


OK.

A pipe with radius r and length L in feet and pressure diff dP has laminar
flow Q = Pir^4dP/(8MuL) ft^3/s. Viscosity Mu is 6x10^-7 lb-s/ft^2 at 32 F.
With 16' of 1/2" pipe, 8' up and down, Q = Pi(0.25/12)^4dP/(8x6x10^-7x16')
= 0.0077dP ft^3/s or 1729dT lb/h,


No Way!!!


Hmmm.

Check some references, viscosity of water is more like 3.7x10^-5 lbf-s/ft^2
at 32 F (about 1.8 centipoise). Since your number is about 1/32 of the
right value, I suspect your's is missing a 'g sub c' division or something
(slugs??) (damned imperial units ;-).


Thanks for the correction. How many legs in a centipoise?

50/50 glycol is much worse, about 1.88x10^-3 lbf-s/ft^2 (about 9 centipoise).
For laminar flow... I use Q = dP*(d^4)/(.000273*mu*L) (Q in gpm, dP in psi,
d in inches, mu in centipoise and L in ft) (Crane TP 410 pg 3-2).


Where do we get a Crane TP 410 pg 3-2?

That gives Q = (0.15072/144 * dT)*(.5^4)/ (.000273*9*16) for about .001664dT
gpm for 50/50 glycol.

50/50 glycol is about 0.746 BTU/lbm-F so you would get 0.001664*dT*9*0.746*60
BTU/hr or 0.67 BTU/hr /F.


A gallon of 50/50 glycol weighs 9 pounds?

The flow is 0.898dT pounds per hour, right? And each pound moves 0.746dT Btu,
so the flow moves 0.898dTx0.746dT = 0.67dT^2 Btu/h.

Replace the 1/2 pipe with 2" (always good idea to
use large diameter pipe with thermosyphoning :-)


Thanks for the improvement. The radiator might have 2" hoses...

and you can get about 171 BTU/hr/F.


....171dT^2 Btu/h?

At that, you would need about 4.7 F delta T to get your target 800 BTU/hr.


Or maybe sqrt(800/171) = 2.2. Then again, maybe it's -26 F outdoors.

Nick

  #14   Report Post  
daestrom
 
Posts: n/a
Default


wrote in message
...
daestrom wrote:

The ice box might be 2'x2'x8' tall, with a 55 gallon drum packed with
100 2 liter water bottles surrounded by an antifreeze solution
thermosyphoning through an old 800 Btu/h-F auto radiator above with
an 8' chimney above. Cold air might enter the radiator and flow out
at the top of the chimney.

With 800 Btu/h-F of conductance from 32 F water to outdoor air at temp
T,
(32-T)800 = 3456 Btu makes T = 32-3456/800 = 27.7 for 1-hour per day
cooling and T = 32-3456/1600 = 29.8 for 2-hour cooling, and so on.


With a radiator pump and fan and a differential thermostat and a fridge
pump
and a fridge thermostat and a compact ice box with the drum on the ground.
All low power stuff, but can we omit some? What's a good compromise?

The radiator might have a chimney, and it might stay primed for a long
time,
with both supply and return pipes underwater, and the fridge loop might
stop
working before it freezes the fridge...

How do antifreeze or salt water thermosyphon when cold?

I figured cold water weighs about 62.67 - 0.003T lb/ft^3...


You mentioned glycol, so assuming a 50/50 mix, the density change is more
like 0.01884 lb/ft^3-F...


Hey, 6X better for thermosyphoning :-)

Even weak solutions aren't very helpful, using just 10% glycol would give
about 0.001 lb/ft^3-F. A bit of a trade off, higher mixtures give better
density change per degree, but hurt viscosity and heat capacitance.
Probably for a given operating temperture, an 'optimum' mixture could be
determined.


...50/50 sounds good, if the viscosity doesn't increase much. We might
not care much what happens much below 32 F, when all the water bottles
are frozen. Do we need water bottles, vs slush?

The density difference caused by the temperature difference between up
and
down pipes causes a pressure difference proportional to the height of
the
water column, making a flow through the resistance of the pipe loop.
With
8' of height and a dT temperature difference, dP = 0.024dT lb/ft^2.


...dP = 0.01884dT * H, for dP = 0.15072dT for 50/50 glycol mix running 8'.


OK.

A pipe with radius r and length L in feet and pressure diff dP has
laminar
flow Q = Pir^4dP/(8MuL) ft^3/s. Viscosity Mu is 6x10^-7 lb-s/ft^2 at 32
F.
With 16' of 1/2" pipe, 8' up and down, Q =
Pi(0.25/12)^4dP/(8x6x10^-7x16')
= 0.0077dP ft^3/s or 1729dT lb/h,


No Way!!!


Hmmm.

Check some references, viscosity of water is more like 3.7x10^-5
lbf-s/ft^2
at 32 F (about 1.8 centipoise). Since your number is about 1/32 of the
right value, I suspect your's is missing a 'g sub c' division or something
(slugs??) (damned imperial units ;-).


Thanks for the correction. How many legs in a centipoise?


1/5 X number of toes, and the same number as feet ;-)


50/50 glycol is much worse, about 1.88x10^-3 lbf-s/ft^2 (about 9
centipoise).
For laminar flow... I use Q = dP*(d^4)/(.000273*mu*L) (Q in gpm, dP in
psi,
d in inches, mu in centipoise and L in ft) (Crane TP 410 pg 3-2).


Where do we get a Crane TP 410 pg 3-2?


A very useful booklet. Lots of practical formulae for fluid flow. The
appendices alone are worth it. Comes in either a metric or imperial version
(I have imperial version that I use at work).

http://www.cranevalve.com/tech.htm


That gives Q = (0.15072/144 * dT)*(.5^4)/ (.000273*9*16) for about
.001664dT
gpm for 50/50 glycol.

50/50 glycol is about 0.746 BTU/lbm-F so you would get
0.001664*dT*9*0.746*60
BTU/hr or 0.67 BTU/hr /F.


A gallon of 50/50 glycol weighs 9 pounds?


That's what my figures show... Here's nice paper about glycol. You can
calculate the polynomials, or just guesstimate from the graphs.
http://www.mrc-eng.com/Downloads/Brine%20Properties.pdf

Then to convert to just about *any* units under the sun (including the
paper's Pascal-Second to lbf-s/ft^2), I recommend this page...
http://www.processassociates.com/pro...ert/cf_all.htm

(great for metric vs. imperial 'stuff' too)


The flow is 0.898dT pounds per hour, right? And each pound moves 0.746dT
Btu,
so the flow moves 0.898dTx0.746dT = 0.67dT^2 Btu/h.

Replace the 1/2 pipe with 2" (always good idea to
use large diameter pipe with thermosyphoning :-)


Thanks for the improvement. The radiator might have 2" hoses...

and you can get about 171 BTU/hr/F.


...171dT^2 Btu/h?

At that, you would need about 4.7 F delta T to get your target 800 BTU/hr.


Or maybe sqrt(800/171) = 2.2. Then again, maybe it's -26 F outdoors.


Hmm... you're right. Doubling the temperature difference would double the
dP and hence the flow in a laminar system. And of course doubling the flow
*and* the delta T would quadruple the heat transfer. Missed that one, was
busy calculating for 1 degree but forgot the second dT in heat rate.

Yes, in the 'dead of winter', the excessive number of 'fridge-degree hours'
make it a slam dunk. But just how far into the spring and fall it can work
gets a bit more dicey as performance drops. And how many people want to
live in Massena, NY besides Steve ;-) Could probably get even better
performance in International Falls, MN, but then, who wants to live where
they break records for cold all the time ;-)

daestrom


Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT +1. The time now is 01:11 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"