The scientific question is how do we correctly interpret why EE pads seem
to outperform FF pads in this police cruiser study done in 2000?
https://www.justnet.org/pdf/EvaluationBrakePads2000.pdf
https://www.justnet.org/pdf/Copy-of-...port-Draft.pdf
In another thread today, the topic was discussed on how to intelligently
select friction materials for replacement brake pads and shoes.
https://s18.postimg.org/wqilqasdl/to...n_material.jpg
That discussion hinges on a scientifically valid interpretation and
understanding of the utility of the "friction codes" printed on every brake
pad and shoe in the USA:
AMECA Compliance List of Automotive Safety Devices:
Friction Material Edge Codes(TM), May 2011
http://safebraking.com/wp-content/uploads/2013/02/AMECA-List-of-VESC-V-3-Brake-Friction-Material-Edge-Codes-May-20112.pdf
A general summary of which is listed below:
http://faculty.ccbcmd.edu/~smacadof/DOTPadCodes.htm
https://netrider.net.au/threads/unde...ratings.88551/
http://www.hotrod.com/articles/hrdp-...ad-technology/
etc.
The scientific question is how do we correctly interpret why EE pads seem
to outperform FF pads in this police cruiser study done in 2000?
https://www.justnet.org/pdf/EvaluationBrakePads2000.pdf