Metalworking (rec.crafts.metalworking) Discuss various aspects of working with metal, such as machining, welding, metal joining, screwing, casting, hardening/tempering, blacksmithing/forging, spinning and hammer work, sheet metal work.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
B.B.
 
Posts: n/a
Default Drilling a nice hole

In addition to my welding class I'm taking a machine shop class. Our
project involves a little piston air motor.
To make the cylinder for this we're instructed to drill & ream a
blind hole. I finished and reamed the hole, it's straight and clean,
except that it appears a chip wedged itself between the reamer and the
wall and scored the inside of the cylinder, making my piece scrap.
Is that just a danger of making a hole this way, or is there
something I can do to prevent such a problem? I did run the reamer a
bit faster than I was supposed to because the mill I was on had a broken
low range. Could that lead to this sort of thing?

--
B.B. --I am not a goat! thegoat4 at airmail dot net
http://web2.airmail.net/thegoat4/
  #2   Report Post  
Bob May
 
Posts: n/a
Default

I suspect that you didn't use any lubricant when reeaming the hole.

--
Why isn't there an Ozone Hole at the NORTH Pole?


  #3   Report Post  
Lloyd E. Sponenburgh
 
Posts: n/a
Default


"B.B." u wrote in message
news
In addition to my welding class I'm taking a machine shop class. Our
project involves a little piston air motor.
To make the cylinder for this we're instructed to drill & ream a
blind hole. I finished and reamed the hole, it's straight and clean,
except that it appears a chip wedged itself between the reamer and the
wall and scored the inside of the cylinder, making my piece scrap.
Is that just a danger of making a hole this way, or is there
something I can do to prevent such a problem? I did run the reamer a
bit faster than I was supposed to because the mill I was on had a broken
low range. Could that lead to this sort of thing?


As another poster said, using a lubricant is important -- but it still won't
prevent the odd errant chip from wedging, if it moves around enough.

One way to help prevent this is to ream upside-down, so the chips fall out
as you work. This isn't very practical on most work, and only good for dry
reaming, like on cast iron.

Another way is to fill the flutes of the reamer with a sticky wax (like
toilet bowl ring wax) to catch and hold chips as they leave the cutting
edge. This works nicely, but if you do it, you must clean and re-wax
frequently to prevent loading the reamer.

Some old guys swear by wrapping the reamer in waxed paper. But I've never
been able to get the thing started in a hole without its shedding its
wrapper.

LLoyd


  #4   Report Post  
Harold and Susan Vordos
 
Posts: n/a
Default


"B.B." u wrote in message
news
In addition to my welding class I'm taking a machine shop class. Our
project involves a little piston air motor.
To make the cylinder for this we're instructed to drill & ream a
blind hole. I finished and reamed the hole, it's straight and clean,
except that it appears a chip wedged itself between the reamer and the
wall and scored the inside of the cylinder, making my piece scrap.
Is that just a danger of making a hole this way, or is there
something I can do to prevent such a problem? I did run the reamer a
bit faster than I was supposed to because the mill I was on had a broken
low range. Could that lead to this sort of thing?


Reamers, at best, are not a great tool for such things. As you progress,
you'll learn about boring. That's the preferred method of establishing a
hole that you want to be straight, round, and on location. Reamers are
notorious for cutting multi-sided holes and creating bell mouth in the
bargain.

When reaming, make sure you lubricate well, and take out less than .015".
Honing the cutting edge often pays dividends, but only if you know and
understand how a reamer cuts. You can render one useless very easily if you
don't know cutting theory.

The scoring you experienced is more likely from some chip welding on the
reamer. If you look closely at the reamer, where the chamfer is on the end,
you're likely to find one flute that has a chip firmly attached right at the
point of contact, the cutting surface. By taking lighter cuts and good
lubrication, plus clearing the reamer adequately, you can usually avoid that
condition. It also helps to not be machining mild steel, which is well
known for tearing.

Good luck!

Harold




  #5   Report Post  
jim rozen
 
Posts: n/a
Default

In article , B.B.
says...

In addition to my welding class I'm taking a machine shop class. Our
project involves a little piston air motor.
To make the cylinder for this we're instructed to drill & ream a
blind hole. I finished and reamed the hole, it's straight and clean,
except that it appears a chip wedged itself between the reamer and the
wall and scored the inside of the cylinder, making my piece scrap.
Is that just a danger of making a hole this way, or is there
something I can do to prevent such a problem? I did run the reamer a
bit faster than I was supposed to because the mill I was on had a broken
low range. Could that lead to this sort of thing?


How much material did you remove with the reamer?
IOW how much smaller than the nominal diameter of the
reamer was the hole?

Jim


--
==================================================
please reply to:
JRR(zero) at pkmfgvm4 (dot) vnet (dot) ibm (dot) com
==================================================


  #6   Report Post  
B.B.
 
Posts: n/a
Default

In article ,
jim rozen wrote:

In article , B.B.
says...

In addition to my welding class I'm taking a machine shop class. Our
project involves a little piston air motor.
To make the cylinder for this we're instructed to drill & ream a
blind hole. I finished and reamed the hole, it's straight and clean,
except that it appears a chip wedged itself between the reamer and the
wall and scored the inside of the cylinder, making my piece scrap.
Is that just a danger of making a hole this way, or is there
something I can do to prevent such a problem? I did run the reamer a
bit faster than I was supposed to because the mill I was on had a broken
low range. Could that lead to this sort of thing?


How much material did you remove with the reamer?
IOW how much smaller than the nominal diameter of the
reamer was the hole?

Jim


Responding to this and all the other questions I've seen in this
thread so far:
I drilled undersize by 1/32", as our teacher told us is generally
correct for any hole over 1/2", I used lubricant, (though it's anyone's
guess what was in that bottle) and the material is aluminum.
The cutting tools are all in one cabinet that sees quite a lot of
abuse, so I wouldn't be too surprised if I picked up a tool with a bad
edge or a chip welded on already, though I did try to inspect anything I
got out of there and I am fairly certain my reamer was in good shape
when I used it.
Oh well, it was my first machined part ever, so no surprise I hosed
it. I still prefer blacksmithing as I can just hammer the damned thing
back the other way when this kind of thing happens. (:

--
B.B. --I am not a goat! thegoat4 at airmail dot net
http://web2.airmail.net/thegoat4/
  #7   Report Post  
Dave Baker
 
Posts: n/a
Default


B.B. u wrote in message
news
In article ,
jim rozen wrote:

In article ,

B.B.
says...

In addition to my welding class I'm taking a machine shop class. Our
project involves a little piston air motor.
To make the cylinder for this we're instructed to drill & ream a
blind hole. I finished and reamed the hole, it's straight and clean,
except that it appears a chip wedged itself between the reamer and the
wall and scored the inside of the cylinder, making my piece scrap.
Is that just a danger of making a hole this way, or is there
something I can do to prevent such a problem? I did run the reamer a
bit faster than I was supposed to because the mill I was on had a broken
low range. Could that lead to this sort of thing?


How much material did you remove with the reamer?
IOW how much smaller than the nominal diameter of the
reamer was the hole?

Jim


Responding to this and all the other questions I've seen in this
thread so far:
I drilled undersize by 1/32", as our teacher told us is generally
correct for any hole over 1/2".


Hmmm, did he now? The Dormer Twist Drill and Reamer handbook goes into
considerable detail about reamer stock removal. You need to remove some
stock to prevent the reamer rubbing and blunting rather than cutting but the
less stock you can get away with the better. That's why the stock removal
table differentiates between reaming holes that have just been rough drilled
with a 2 flute drill and those pre-finished by boring or core drilling. In
other words part of the stock removal recommendation is to make sure the
hole gets cleaned up all round by the reamer even if it's a bit oval or on
the **** and the other part is what is needed for the reamer itself to work
properly.

For reamers in the range 3/8" to 3/4" it recommends 1/64th (16 thou) for
drilled holes and 10 thou for bored holes. Half to a third of your teacher's
advice. Aluminium is a bugger for sticking to the tool if you take too big a
cut, run too fast or don't have plenty of coolant so in conjunction with you
reaming at a high speed it isn't surprising you chewed the hole up with a
1/32" ream. Blind holes are even worse than normal because there's nowhere
for the swarf to go.

Personally I ream out even less than the Dormer book suggests and I don't
find my own reamers getting blunt or cutting out of tolerance. When I make
bronze valve guides on the lathe I pre drill at 7.9mm before reaming at 8mm
so that's no more than 4 thou stock removal. Hundreds of guides over the
years and I'm still on the same reamer, which was a used one when I got it,
and it's still reaming at cock on 8mm. I've tried bigger cuts but you stand
a good chance of the flutes getting packed with swarf and chewing the bore
up.

In short, the less stock you remove with a reamer the better IMO. Also the
slower the speed the better within limits. In rigid high speed production
setups it is often suggested to run at half the drilling speed but I always
find a much slower speed does the job best for the home machinist. Maybe 80
rpm for a 1/2" reamer and 150 for an 8mm one. Much less chance of chatter or
taper developing and less heat build up in the job.
--
Dave Baker - Puma Race Engines (www.pumaracing.co.uk)


  #8   Report Post  
B.B.
 
Posts: n/a
Default

In article ,
"Dave Baker" wrote:

[...]

In short, the less stock you remove with a reamer the better IMO. Also the
slower the speed the better within limits. In rigid high speed production
setups it is often suggested to run at half the drilling speed but I always
find a much slower speed does the job best for the home machinist. Maybe 80
rpm for a 1/2" reamer and 150 for an 8mm one. Much less chance of chatter or
taper developing and less heat build up in the job.


Well, then. Mystery solved! To get down to specifics, I dug up my
notes. I needed to ream a hole .625", or 5/8. So, following the
instructor's instructions I wound up with a 19/32 drill, which the
project cabinet just so happened to have a plethora of in various stages
of devastation. IIRC, I wound up running the reamer around 700-800 RPM,
where the proper speed (according to the teacher) was closer to 600.
I'm guesstimating the "good speed" would have been more around a tenth
of that.
Attempt #2 (which I think I'll be doing next Monday) will get a much
gentler treatment.
What would you say about feed rate? When he demonstrated he pushed
the reamer through a 2 1/4" deep hole in about two seconds' time. I
assume a much slower RPM would mean an equally slower feed?

While I'm here, we had to lay out the part prior to machining it.
What, exactly, is the point of that? Is it really just so you can
double-check yourself and make sure you don't do anything stupid, or am
I missing something obvious? We didn't have to center-punch the part
before drilling, we simply used a center-drill first, so I don't see
much benefit to this. Then again, maybe we're supposed to do this just
for the sake of it because later class (which I'm not taking) will do it
"for real" and they're just giving up practice.

--
B.B. --I am not a goat! thegoat4 at airmail dot net
http://web2.airmail.net/thegoat4/
  #9   Report Post  
Harold and Susan Vordos
 
Posts: n/a
Default


"B.B." u wrote in message
news snip---

What would you say about feed rate? When he demonstrated he pushed
the reamer through a 2 1/4" deep hole in about two seconds' time. I
assume a much slower RPM would mean an equally slower feed?


Because reamers are multi-toothed, they accept fast feed with ease, but it
has to be within reason. What you need to do is some practice reaming of
various materials and learn what works under your circumstances. I'd have
fed the reamer slower if I had to use one, but I would have bored instead.
When reaming as much material as you did (1/32"), there's usually no room
for the large volume of chips to accumulate, and that alone can be
troublesome. There's no way in hell you should have been reaming so much
material in such a small hole. My advice would have been to use the 17/32"
drill to establish the rough hole, then to follow up with a 35/64" drill (or
bore the hole), then ream for size, assuming you had to ream, not bore.
You'd have been moving far less metal, thus loading the flutes less. It's
also not a bad idea to stop mid bore and clear the chips when you're reaming
deep holes. The chips stack up at the cutting end and eventually resist
flowing in the flutes otherwise.

While I'm here, we had to lay out the part prior to machining it.
What, exactly, is the point of that? Is it really just so you can
double-check yourself and make sure you don't do anything stupid, or am
I missing something obvious?


In my opinion, that's a good thing. It not only teaches you proper layout
for when you really must have it, it shows any mistakes you may be about to
make. Learning to use a scale with each move will eventually take the
place of the layout for finding mistakes, assuming you learn good habits and
always have one near.

We didn't have to center-punch the part
before drilling, we simply used a center-drill first, so I don't see
much benefit to this.


If he's teaching to work without a center punch, I'm all for this guy. It's
more than time for that relic of a way to locate holes to be abandoned.
Regardless of what most guys insist on doing, center popping holes that you
want located properly is a poor way to work. You generally introduce more
error with the punch than you'd otherwise get, and it also prevents the use
of a wiggler with decent results if you want to pick up the cross points of
a layout. When you want to drill holes on location and don't have the
luxury of a mill with calibrated dials or a DRO, you can use your layout and
a wiggler to locate the holes with outstanding results. Pick up a punch
and a good deal of that is lost. Using this method requires that your
part be firmly clamped on location, and that can be done even on a drill
press. You don't have to use a mill, although it's much nicer if you have
one.

Then again, maybe we're supposed to do this just
for the sake of it because later class (which I'm not taking) will do it
"for real" and they're just giving up practice.


That's my take on it. Try to learn all you can------without a doubt, you'll
use all of it over a period of time.

Good luck with the classes!

Harold



  #10   Report Post  
Dave Baker
 
Posts: n/a
Default


B.B. u wrote in message
news
In article ,
"Dave Baker" wrote:

[...]

In short, the less stock you remove with a reamer the better IMO. Also

the
slower the speed the better within limits. In rigid high speed production
setups it is often suggested to run at half the drilling speed but I

always
find a much slower speed does the job best for the home machinist. Maybe

80
rpm for a 1/2" reamer and 150 for an 8mm one. Much less chance of chatter

or
taper developing and less heat build up in the job.


Well, then. Mystery solved! To get down to specifics, I dug up my
notes. I needed to ream a hole .625", or 5/8. So, following the
instructor's instructions I wound up with a 19/32 drill, which the
project cabinet just so happened to have a plethora of in various stages
of devastation. IIRC, I wound up running the reamer around 700-800 RPM,


Holy crap Batman!

where the proper speed (according to the teacher) was closer to 600.
I'm guesstimating the "good speed" would have been more around a tenth
of that.


One thing you should bear in mind and which will stand you in good stead for
your future machining is this. The majority of the recommendations on speeds
and feeds for machining different metals have evolved from the needs of high
speed production to be as cost effective as possible.

That means the fastest way to remove metal consistent with not killing
expensive tooling too quick and maintaining accuracy. It's all about trade
offs. Let's say a carbide tip costs £5 and lasts for 100 parts at 500 rpm,
70 parts at 800 rpm and 50 parts at 1000 rpm. Factor in labour rates, wear
on the machine at high rpm, extra electricity at higher rpm and you can
calculate the most cost effective speed and feed to do each job at.
Generally that means going as fast as possible even if it burns tips out a
bit more than going slowly.

For hobby machining forget the lot. The best speed and feed is the one that
works for you and you find that out by trial and error. Most materials have
a wide range of speeds at which they'll cut just fine with the right
tooling. Cast iron needs to be turned fairly slowly because it's abrasive
and aluminium much faster or it tears but with a nice sharp tip you can get
a good finish on anything at fractions of the speed that a book will tell
you to turn at.

I always machine things slowly because my time is my own but carbide tips
and drill bits cost money and I rarely burn one out. My friend who's a CNC
engineer will run his lathe at 5 times the rpm and use 3 tips on the job
because taking an extra couple of hours costs him a lot more in wasted
earnings than a few new tips do.

Learn to machine things slowly and accurately and you can always speed
things up bit by bit as you gain experience.

Attempt #2 (which I think I'll be doing next Monday) will get a much
gentler treatment.
What would you say about feed rate? When he demonstrated he pushed
the reamer through a 2 1/4" deep hole in about two seconds' time. I
assume a much slower RPM would mean an equally slower feed?


It's a feel thing. Just push the reamer as fast as it wants to go. However
you don't want to leave a reamer turning in a hole any longer than you have
to or it'll rub and cut oversize. Aluminium cuts really easily so you won't
need to be in there long but if I were your teacher I'd be starting you off
on through holes rather than blind ones so the swarf can fall through.

If your only choice of tools is drills in 1/64 increments then get as close
to final size as you can. Ideally though you want to bore to within the last
10 thou before you ream but if you have no boring tool then manage without.
Try the drills at 400 to 500 rpm and ream at 100 to 150 and see how it goes.
It won't matter how fast or slow you ream though if you generate so much
swarf it clogs the flutes. You'll still chew the job up. You might need to
peck a few mm at a time and then pull back and clear them unless you're only
reaming the last few thou out of the job. That's a bad way to use a reamer
though and chances are you'll end up oversized at the top if you keep taking
it in and out of the job. Reaming should always be a one shot deal and then
back out of the job as fast as possible.


While I'm here, we had to lay out the part prior to machining it.
What, exactly, is the point of that?


To teach you to get your reamed hole in the right place as well as being the
right size. There's no point in getting the perfect hole but 2mm out of
position.

Is it really just so you can
double-check yourself and make sure you don't do anything stupid, or am
I missing something obvious? We didn't have to center-punch the part
before drilling, we simply used a center-drill first,


Good. I've never used a centre punch in my life other than for starting a
hand held drill in roughly the right place to fix a shelf up. On a machine
you should be laying out with a DRO or the crank dials and starting holes
with a centre drill or milling cutter. A centre punch has no place in
precision machining.
--
Dave Baker - Puma Race Engines (www.pumaracing.co.uk)




  #11   Report Post  
jim rozen
 
Posts: n/a
Default

In article , B.B.
says...

I drilled undersize by 1/32", as our teacher told us is generally
correct for any hole over 1/2", I used lubricant, (though it's anyone's
guess what was in that bottle) and the material is aluminum.
The cutting tools are all in one cabinet that sees quite a lot of
abuse, so I wouldn't be too surprised if I picked up a tool with a bad
edge or a chip welded on already, though I did try to inspect anything I
got out of there and I am fairly certain my reamer was in good shape
when I used it.


Sounds like you were taking a bit large of a bite with the
first try, and maybe you were running the reamer a bit on the
fast side. Harold's comments about keeping the feed rate
up there (not too slow) are good.

One thing I learned from a toolmaker at work is, you can
tweak the final diameter by adjusting the speed. The faster
you run, with a fast feed rate, the smaller the final hole
is.

As far as centerpunching goes, he and I disagree to some point.
Done accurately and inspected carefully, a centerpunch will
give final hole locations between one and five thou which is
pretty good for rough work.

If you are not doing 'rough work' and want the hole to be
inside a thou location, then drill with almost anything,
and *bore* to within five or ten thou of the final size,
then ream.

You won't get an accurate location that good (+/- 0.001 or better)
unless you bore the hole to start.

Jim


--
==================================================
please reply to:
JRR(zero) at pkmfgvm4 (dot) vnet (dot) ibm (dot) com
==================================================
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Drilling straight through aluminum square tube [email protected] Metalworking 14 January 31st 05 07:32 PM
How to drill a 2" hole through thick particle board? orangetrader Home Repair 11 October 25th 04 06:44 AM
Drilling big hole in ceramic tile Jack Home Repair 3 June 23rd 04 08:45 PM
drilling hole for 110mm waste Paul UK diy 11 May 18th 04 10:04 PM
QUESTION - HOW DO YOU SHARPEN A HOLE SAW? T. Woodworking 17 November 25th 03 11:25 PM


All times are GMT +1. The time now is 06:37 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"