Metalworking (rec.crafts.metalworking) Discuss various aspects of working with metal, such as machining, welding, metal joining, screwing, casting, hardening/tempering, blacksmithing/forging, spinning and hammer work, sheet metal work.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 790
Default can anyone tell me what this thing is really really used for?

I made my best guess, and listed it on ebay, but maybe one of you folks
knows if I guessed right or if it is really something else - thanks:

http://cgi.ebay.com/ebaymotors/ws/eB...m=300214104853

--
bill
to email me, to to my web page, www.wbnoble.com and find my email
or unscramble the following by removing spaces and correcting the obvious
spelling errors

wil lia m_b_n obl e at msn daught com



--
Posted via a free Usenet account from http://www.teranews.com

  #2   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 129
Default can anyone tell me what this thing is really really used for?


"William Noble" wrote in message
.. .
I made my best guess, and listed it on ebay, but maybe one of you folks
knows if I guessed right or if it is really something else - thanks:

http://cgi.ebay.com/ebaymotors/ws/eB...m=300214104853

--
bill


Just what you said: to balance wheel/tire assemblies. Before spin balancers,
this was an accepted method of statically balancing a wheel.

-Carl


  #3   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 3,286
Default can anyone tell me what this thing is really really used for?

Just what you said: to balance wheel/tire assemblies. Before spin
balancers, this was an accepted method of statically balancing a wheel.


Hope its still accepted. I have one like bill's and my own tire changer
machine. Static balancers do as good a job as the new dynamic units, but
they are fussy and slow. Two traits that don't go well with the work you get
at wally world etc.

Karl


  #4   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 680
Default can anyone tell me what this thing is really really used for?


"Karl Townsend" wrote: (clip) Static balancers do as good a job as the new
dynamic units, but
they are fussy and slow.(clip)

^^^^^^^^^^^^^^^^^^^
When the tire shop does a dynamic balance, they add weights to the inside
and the outside of the rim, according to what the computer tells them. A
static balancer cannot distinguish between the two sides of the wheel.

Bill, I must take issue with your statement, in the e-bay listing, that the
height of the post increases the sensitivity of the level. The bubble moves
off-center according to the ANGLE that it is off, and this does not change
with the height of the post. What DOES change is the DISTANCE that the
level moves off center, but that does not provide balancing information. (I
guess I'm just a nit-picker.)


  #5   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 549
Default can anyone tell me what this thing is really really used for?

Karl Townsend wrote:
Just what you said: to balance wheel/tire assemblies. Before spin
balancers, this was an accepted method of statically balancing a wheel.


Hope its still accepted. I have one like bill's and my own tire changer
machine. Static balancers do as good a job as the new dynamic units, but
they are fussy and slow. Two traits that don't go well with the work you get
at wally world etc.

Karl



Same here. I have a manual changer and a nice Coates as well. Balancer
machines are nice BUT there are a bunch of tires you cannot do unless
you either buy a dedicated machine OR a bunch of adapter hardware. So
for them I use the static bubble. It just takes a brain to use it and
you HAVE to pay close attention.

--
Steve W.
Near Cooperstown, New York


  #6   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 12,529
Default can anyone tell me what this thing is really really used for?


"Steve W." wrote in message
...
Karl Townsend wrote:
Just what you said: to balance wheel/tire assemblies. Before spin
balancers, this was an accepted method of statically balancing a wheel.


Hope its still accepted. I have one like bill's and my own tire changer
machine. Static balancers do as good a job as the new dynamic units, but
they are fussy and slow. Two traits that don't go well with the work you
get at wally world etc.

Karl



Same here. I have a manual changer and a nice Coates as well. Balancer
machines are nice BUT there are a bunch of tires you cannot do unless you
either buy a dedicated machine OR a bunch of adapter hardware. So for them
I use the static bubble. It just takes a brain to use it and you HAVE to
pay close attention.

--
Steve W.
Near Cooperstown, New York


How do you achieve dynamic balance (freedom from side-to-side wobble) with a
static balancer, which measures circumferential balance?

As I understand it, you could get away with static balance when tires were
very skinny, but as they've gotten wider, it's become necessary to balance
them dynamically. Correct?

--
Ed Huntress



  #7   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 5,154
Default can anyone tell me what this thing is really really used for?

On Sun, 6 Apr 2008 20:17:49 -0400, with neither quill nor qualm, "Ed
Huntress" quickly quoth:


"Steve W." wrote in message
...
Karl Townsend wrote:
Just what you said: to balance wheel/tire assemblies. Before spin
balancers, this was an accepted method of statically balancing a wheel.

Hope its still accepted. I have one like bill's and my own tire changer
machine. Static balancers do as good a job as the new dynamic units, but
they are fussy and slow. Two traits that don't go well with the work you
get at wally world etc.

Karl



Same here. I have a manual changer and a nice Coates as well. Balancer
machines are nice BUT there are a bunch of tires you cannot do unless you
either buy a dedicated machine OR a bunch of adapter hardware. So for them
I use the static bubble. It just takes a brain to use it and you HAVE to
pay close attention.

--
Steve W.
Near Cooperstown, New York


How do you achieve dynamic balance (freedom from side-to-side wobble) with a
static balancer, which measures circumferential balance?

As I understand it, you could get away with static balance when tires were
very skinny, but as they've gotten wider, it's become necessary to balance
them dynamically. Correct?


Correct. We used to split the weight at a certain point, halving it
to either side of the rim at that one point. For larger weights,
indicating a real trash tire, we'd split it in half again on either
side, separating the quarter weights by about 25 degrees around the
rim. This kept the dynamic imbalances to a minimum.

--
Never tell people how to do things. Tell them what
to do and they will surprise you with their ingenuity.
-- George S. Patton
  #8   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 680
Default can anyone tell me what this thing is really really used for?


"Ed Huntress" wrote: As I understand it, you could get away with static
balance when tires were
very skinny, but as they've gotten wider, it's become necessary to balance
them dynamically. Correct?

^^^^^^^^^^^^^^^^^^^^
Correct. Also, speeds were lower, and wheels were larger, so the lower RPM
placed less importance on balance.


  #9   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 790
Default can anyone tell me what this thing is really really used for?


"Leo Lichtman" wrote in message
...

"Karl Townsend" wrote: (clip) Static balancers do as good a job as the
new dynamic units, but
they are fussy and slow.(clip)

^^^^^^^^^^^^^^^^^^^
When the tire shop does a dynamic balance, they add weights to the inside
and the outside of the rim, according to what the computer tells them. A
static balancer cannot distinguish between the two sides of the wheel.

Bill, I must take issue with your statement, in the e-bay listing, that
the height of the post increases the sensitivity of the level. The bubble
moves off-center according to the ANGLE that it is off, and this does not
change with the height of the post. What DOES change is the DISTANCE that
the level moves off center, but that does not provide balancing
information. (I guess I'm just a nit-picker.)


What I was trying to say by "increased sensitivity" was that for a given
amount of unbalance the bubble would move farther so that you could see it
better - isn't that sensitivity?



--
Posted via a free Usenet account from http://www.teranews.com

  #10   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 680
Default can anyone tell me what this thing is really really used for?


"William Noble" wrote: What I was trying to say by "increased sensitivity"
was that for a given
amount of unbalance the bubble would move farther so that you could see it
better - isn't that sensitivity?

^^^^^^^^^^^^^^^^^^^^^^^
What I meant was that for a given amount of unbalance, the position of the
bubble within its surround is the same. To me that is the SAME sensitivity.
For the sake of discussion, let's take this to a ridiculous extreme. Make
the post 8' tall, so you have to stand on a ladder to see the bubble. A
small tilt of the balancer would move the bubble about a foot, but the
surround would move with it, so you would still see very little displacement
of the bubble with respect to the "bullseye." {Hit nitpick send key.}




  #11   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 2,502
Default can anyone tell me what this thing is really really used for?

On Sun, 06 Apr 2008 22:34:27 GMT, "Carl Byrns"
wrote:


"William Noble" wrote in message
. ..
I made my best guess, and listed it on ebay, but maybe one of you folks
knows if I guessed right or if it is really something else - thanks:

http://cgi.ebay.com/ebaymotors/ws/eB...m=300214104853

--
bill


Just what you said: to balance wheel/tire assemblies. Before spin balancers,
this was an accepted method of statically balancing a wheel.

-Carl


Arnt there some adapter rings missing though?

Gunner



"Pax Americana is a philosophy. Hardly an empire.
Making sure other people play nice and dont kill each other (and us)
off in job lots is hardly empire building, particularly when you give
them self determination under "play nice" rules.

Think of it as having your older brother knock the **** out of you
for torturing the cat." Gunner
  #12   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 790
Default can anyone tell me what this thing is really really used for?


"Gunner Asch" wrote in message
...
On Sun, 06 Apr 2008 22:34:27 GMT, "Carl Byrns"
wrote:


"William Noble" wrote in message
...
I made my best guess, and listed it on ebay, but maybe one of you folks
knows if I guessed right or if it is really something else - thanks:

http://cgi.ebay.com/ebaymotors/ws/eB...m=300214104853

--
bill


Just what you said: to balance wheel/tire assemblies. Before spin
balancers,
this was an accepted method of statically balancing a wheel.

-Carl


Arnt there some adapter rings missing though?

Gunner


I don't think so - the bottom cone is fixed in place, the top cone slides on
the 1/2 inch shaft - so it ought to hold whatever wheels it was designed to
hold - I don't think you could put a car wheel on it (well, maybe a very
teeny tiny car wheel....) and if there were adapters, I don't have them
anyway.

Anyone recognize the company? G&N Product Devleopment? they existed
recently enough to have a phone number with an area code and an address with
a zip code, but I can't find anything out about them



--
Posted via a free Usenet account from http://www.teranews.com

  #13   Report Post  
Posted to rec.crafts.metalworking
* * is offline
external usenet poster
 
Posts: 222
Default can anyone tell me what this thing is really really used for?



Ed Huntress wrote in article
...

"Steve W." wrote in message
...
Karl Townsend wrote:
Just what you said: to balance wheel/tire assemblies. Before spin
balancers, this was an accepted method of statically balancing a

wheel.

Hope its still accepted. I have one like bill's and my own tire

changer
machine. Static balancers do as good a job as the new dynamic units,

but
they are fussy and slow. Two traits that don't go well with the work

you
get at wally world etc.

Karl



Same here. I have a manual changer and a nice Coates as well. Balancer
machines are nice BUT there are a bunch of tires you cannot do unless

you
either buy a dedicated machine OR a bunch of adapter hardware. So for

them
I use the static bubble. It just takes a brain to use it and you HAVE

to
pay close attention.

--
Steve W.
Near Cooperstown, New York


How do you achieve dynamic balance (freedom from side-to-side wobble)

with a
static balancer, which measures circumferential balance?

As I understand it, you could get away with static balance when tires

were
very skinny, but as they've gotten wider, it's become necessary to

balance
them dynamically. Correct?

--
Ed Huntress





On page 22, March 2002 Rod & Custom Magazine........

"Believe it or not, Goodyear uses a good old-fashioned bubble balancer to
balance large-diameter, fat-tread street rod tires. Why not use a
sophisticated spin balancer? There are several reasons: First a good bubble
balancer is perfectly accurate. Another reason is that a spin balancers
have to be re-calibrated each time they're moved. Finally, spin balancers
are not designed for use on large diameter tires, and the new generation
20s definitely fall into that category. It's something to consider when
balancing big back tires for your street rod."

----------------------


I realize the information is old by today's technology standards, but it
DOES shoot holes in the idea that bubble balancers cannot handle wider and
larger diameter tires.

FWIW, I own a Micro bubble balancer, and I have never had a comeback on
wheel balance. I use it to balance oval-track racing tires, too!

The trick - also the correct procedure, according to the instructions - is
to use FOUR weights......two inside and two outside......every time.



  #14   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 3,146
Default can anyone tell me what this thing is really really used for?

On Apr 6, 11:29*pm, "Leo Lichtman"
wrote:
"William Noble" *wrote: What I was trying to say by "increased sensitivity"


I had a difficult speed-sensitive tire vibration problem on my old
Ranger and made a static tire balancer to help solve it.

Actually an upper shock mount had rusted out. The lip that trapped
road salt also hid the damage. I had to replace the front spring
hanger plate.

The hub adapter is a disk that seats in a machined countersink in the
center hole of the alloy wheels. I tapped the center of the disk
1/2"-20 and bored a conical hole in the threaded end of the hex bolt
that goes into it. It balances on an upright point made of music wire.
Is that clear without a picture?

Screwing the 1/2-20 bolt in or out (up or down) adjusts the
sensitivity by moving the balancing point axially towards or away from
the center of gravity of the wheel. If I turn the bolt in until the
wheel always tips sideways, then back it out until the wheel just
barely balances, a 1/8 ounce wheelweight tips the wheel noticeably.
It's so sensitive that it doesn't need a bubble. It also wore so
quickly that the point needed to be sharpened after every wheel.

This was a useless exercise caused by misreading the problem but it
shows how balancing works. Suspend the wheel at its exact center of
gravity and it will be stable in any position. When I moved the
suspension point 0.010 - 0.020 above the center of gravity the tire
balanced level but a nickel (5 grams) was enough to tilt it.

The height of the stand under the balance point has absolutely nothing
to do with sensitivity, just convenience.

Jim Wilkins
  #15   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 12,529
Default can anyone tell me what this thing is really really used for?


"*" wrote in message
news:01c898a8$5682cec0$5193c3d8@race...


Ed Huntress wrote in article
...

"Steve W." wrote in message
...
Karl Townsend wrote:
Just what you said: to balance wheel/tire assemblies. Before spin
balancers, this was an accepted method of statically balancing a

wheel.

Hope its still accepted. I have one like bill's and my own tire

changer
machine. Static balancers do as good a job as the new dynamic units,

but
they are fussy and slow. Two traits that don't go well with the work

you
get at wally world etc.

Karl



Same here. I have a manual changer and a nice Coates as well. Balancer
machines are nice BUT there are a bunch of tires you cannot do unless

you
either buy a dedicated machine OR a bunch of adapter hardware. So for

them
I use the static bubble. It just takes a brain to use it and you HAVE

to
pay close attention.

--
Steve W.
Near Cooperstown, New York


How do you achieve dynamic balance (freedom from side-to-side wobble)

with a
static balancer, which measures circumferential balance?

As I understand it, you could get away with static balance when tires

were
very skinny, but as they've gotten wider, it's become necessary to

balance
them dynamically. Correct?

--
Ed Huntress





On page 22, March 2002 Rod & Custom Magazine........

"Believe it or not, Goodyear uses a good old-fashioned bubble balancer to
balance large-diameter, fat-tread street rod tires. Why not use a
sophisticated spin balancer? There are several reasons: First a good
bubble
balancer is perfectly accurate. Another reason is that a spin balancers
have to be re-calibrated each time they're moved. Finally, spin balancers
are not designed for use on large diameter tires, and the new generation
20s definitely fall into that category. It's something to consider when
balancing big back tires for your street rod."

----------------------


I realize the information is old by today's technology standards, but it
DOES shoot holes in the idea that bubble balancers cannot handle wider and
larger diameter tires.

FWIW, I own a Micro bubble balancer, and I have never had a comeback on
wheel balance. I use it to balance oval-track racing tires, too!

The trick - also the correct procedure, according to the instructions - is
to use FOUR weights......two inside and two outside......every time.


As a practical matter, I don't doubt that it works out in actual use,
because wheels (if not tires) are not much out of balance to begin with.
This is especially true with machined racing wheels and other fancy wheels.
I used a simple bubble level to balance my own wheels when I was racing,
back around 1970.

As a matter of mechanical principle, though, static balancing, even by
distributing weights, is not "perfectly accurate." It's only accurate in
terms of the circumferential balance of the wheel. If wheels didn't rotate,
or if they rotated only slowly, you could statically balance a wheel so that
it didn't hop up and down, and you could get it dead-nuts accurate.

If there is any inequality in the inside/outside static balance (which you
can't measure with a static balancer; that's why we have dynamic balancers),
the wheel will wobble, because a heavier spot on, say, the outside of the
wheel or tire, even when it's perfectly balanced by an equal weight on the
inside of the tire but 180 deg. opposed in rotation, will make that heavy
spot want to seek the center of the tire's track as it rotates down the
road. The heavier spot on the outside is pulling the whole wheel out of
line, and the heavy spot on the opposite side is pulling the wheel out of
line in the same way, so the wheel wobbles.

All of this works better with an illustration. g It happens to be the
identical situation to balancing cutting tools in their toolholders for
high-speed machining. Once you go beyond 15,000 rpm or so you really need to
spin-balance (dynamically balance) them. I wrote several articles on dynamic
tool balancing and I wish I still had one around, because I'm sure I
explained it much better there. I can't see any difference between a wheel
and a toolholder in this regard but I had to ask, because I wasn't sure I
was thinking of all of the implications.

--
Ed Huntress




  #16   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 3,146
Default can anyone tell me what this thing is really really used for?

On Apr 7, 9:02*am, "Ed Huntress" wrote:
...
As a matter of mechanical principle, though, static balancing, even by
distributing weights, is not "perfectly accurate." It's only accurate in
terms of the circumferential balance of the wheel. If wheels didn't rotate,
or if they rotated only slowly, you could statically balance a wheel so that
it didn't hop up and down, and you could get it dead-nuts accurate.

...
Ed Huntress


The static balancer I described above was meant to spin-balance a tire
as well. The music-wire point was mounted in the center of a ball
bearing so it would rotate. Of course the wheel would rotate on a
stationary point as well but the contact area would quickly wear, so
the bearing let the point turn when friction increased.

If the tire was balanced level with a weight on the top only, when the
wheel was spun that weight would pull itself toward a plane through
the center of rotation and the wheel would wobble. I could mark the
high spot opposite with chalk.

It did wobble but not enough to bother with, since the tire had been
spin-balanced originally (and the problem wasn't imbalance anyway) so
I used the 4-weight pattern, 2 oversized weights on each side spread
apart to reduce their effect. I actually got the tire to run smoothly
up to 65MPH with no active shock absorber.

Jim Wilkins
  #17   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 12,529
Default can anyone tell me what this thing is really really used for?


"Jim Wilkins" wrote in message
...
On Apr 7, 9:02 am, "Ed Huntress" wrote:
....
As a matter of mechanical principle, though, static balancing, even by
distributing weights, is not "perfectly accurate." It's only accurate in
terms of the circumferential balance of the wheel. If wheels didn't
rotate,
or if they rotated only slowly, you could statically balance a wheel so
that
it didn't hop up and down, and you could get it dead-nuts accurate.

....
Ed Huntress


The static balancer I described above was meant to spin-balance a tire
as well. The music-wire point was mounted in the center of a ball
bearing so it would rotate. Of course the wheel would rotate on a
stationary point as well but the contact area would quickly wear, so
the bearing let the point turn when friction increased.


If the tire was balanced level with a weight on the top only, when the
wheel was spun that weight would pull itself toward a plane through
the center of rotation and the wheel would wobble. I could mark the
high spot opposite with chalk.


..It did wobble but not enough to bother with, since the tire had been
spin-balanced originally (and the problem wasn't imbalance anyway) so
I used the 4-weight pattern, 2 oversized weights on each side spread
apart to reduce their effect. I actually got the tire to run smoothly
up to 65MPH with no active shock absorber.


Jim Wilkins


This discussion is always hampered by not having illustrations -- animated
ones are best -- and I've had a heck of a time over the years discussing it
just in words. But I'll try. Bear with me.

What you're describing, if I understand you correctly, is a static balancing
system that makes its measurement by rotating the wheel around its axis,
allowing a pointer to swing through a circle. The radius of that circle is
the measure of relative imbalance.

But that's still static balance you're measuring -- the displacement of
weight around the wheel, in just one plane, which is a plane that is
perpendicular to the wheel axis (the axis of an axle through the wheel.)

Dynamic balance is something completely different. Some automotive tech
literature actually describes it incorrectly. There are several ways to
describe it correctly but I'll try an example:

Say you start with a perfectly balanced wheel and tire, and you put it on
your static balancer. Now put a wheel weight in one spot on the outside rim.
Now put the same amount of weight on the inside rim, 180 degrees away from
the first weight. Check it with your static balancer; if you did it right,
it still indicates that the wheel is perfectly balanced.

But put it on a dynamic balancer and spin it at the (typical) 300 rpm, and
you'll see that it's way the hell out of whack. The wheel is wobbling from
side to side like a drunk.

The reason is that centrifugal force is acting on those weights, forcing
them to seek the plane of the wheel's rotation. When the weight on the
outside rim is at the top of rotation, the centrifugal force vector is
trying to push it as far from the axis of rotation as possible. What's
"possible" is that the weight wants to swing in an arc to one side, so that
it's farther from the axle. For this example, say that it's being pushed to
the right.

Meantime, centrifugal force is pushing the other weight, the one on the
inside rim, through a similar arc, but in the opposite direction. This one
is pushing to the left. You have a "couple" of two forces pushing in
opposite directions, with the axle as their center point. The two forces
together are trying to bend the wheel on its axle. Resistance in the
bearings prevent the two weights from seeking the largest possible circle of
rotation, so the wheel has a force on it, which rotates as the wheel
rotates.

That's a "wobble." You can't predict it with a static balancer. You can only
measure the imbalance, and predict what's going to happen, with a dynamic
balancer. You have to actually get centrifugal force working on the wheel
before the forces appear. Normally a spin balancer rotates a tire at
something like 300 rpm to measure these forces. Very sensitive electronic
balancers only have to rotate the wheel slowly to achieve the same result.

The point of all this is that no amount of accuracy or care in setting up a
static balancer is going to measure this centrifugal effect. The wheel has
to be spinning fast enough to measure the side forces. Only a dynamic
balancer can do it. As tires have gotten smaller and wider, this force, or
couple, gains leverage and becomes a bigger factor in causing front-end
shake or shimmy. It takes an expert to tell this shake from the shake you
get from bad static balance, which actually is the wheel hopping up and
down, but which translates, through the suspension geometry and through play
in the bearings, to shakes that are hard to distinguish from bad dynamic
balance.

FWIW, this is the exact same principle as static versus dynamic balance of a
tool and toolholder assembly for a high speed milling machine.

--
Ed Huntress


  #18   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 549
Default can anyone tell me what this thing is really really used for?

Ed Huntress wrote:


This discussion is always hampered by not having illustrations -- animated
ones are best -- and I've had a heck of a time over the years discussing it
just in words. But I'll try. Bear with me.

What you're describing, if I understand you correctly, is a static balancing
system that makes its measurement by rotating the wheel around its axis,
allowing a pointer to swing through a circle. The radius of that circle is
the measure of relative imbalance.

But that's still static balance you're measuring -- the displacement of
weight around the wheel, in just one plane, which is a plane that is
perpendicular to the wheel axis (the axis of an axle through the wheel.)

Dynamic balance is something completely different. Some automotive tech
literature actually describes it incorrectly. There are several ways to
describe it correctly but I'll try an example:

Say you start with a perfectly balanced wheel and tire, and you put it on
your static balancer. Now put a wheel weight in one spot on the outside rim.
Now put the same amount of weight on the inside rim, 180 degrees away from
the first weight. Check it with your static balancer; if you did it right,
it still indicates that the wheel is perfectly balanced.


Not going to happen. The heavy spot on the tire will still show heavy.
The 180 out weight will only offset the weight you added. I proved this
to someone who sells dynamic balancers by doing your exact test in front
of him. Tire started off 1 oz off. Added 1 oz to just the one side. then
added a duplicate weight 180 out on the back of the rim. Put it back on
the bubble and guess what. It showed the tire was STILL 1 oz. out of
balance.at the same spot on the rim.


But put it on a dynamic balancer and spin it at the (typical) 300 rpm, and
you'll see that it's way the hell out of whack. The wheel is wobbling from
side to side like a drunk.


And it should wobble. You have NOT balanced the tire properly.


The reason is that centrifugal force is acting on those weights, forcing
them to seek the plane of the wheel's rotation. When the weight on the
outside rim is at the top of rotation, the centrifugal force vector is
trying to push it as far from the axis of rotation as possible. What's
"possible" is that the weight wants to swing in an arc to one side, so that
it's farther from the axle. For this example, say that it's being pushed to
the right.


And if you had properly used the static balancer it would show it being
balanced. Like I said it requires a brain to use on properly.


Meantime, centrifugal force is pushing the other weight, the one on the
inside rim, through a similar arc, but in the opposite direction. This one
is pushing to the left. You have a "couple" of two forces pushing in
opposite directions, with the axle as their center point. The two forces
together are trying to bend the wheel on its axle. Resistance in the
bearings prevent the two weights from seeking the largest possible circle of
rotation, so the wheel has a force on it, which rotates as the wheel
rotates.

That's a "wobble." You can't predict it with a static balancer. You can only
measure the imbalance, and predict what's going to happen, with a dynamic
balancer. You have to actually get centrifugal force working on the wheel
before the forces appear. Normally a spin balancer rotates a tire at
something like 300 rpm to measure these forces. Very sensitive electronic
balancers only have to rotate the wheel slowly to achieve the same result.

The point of all this is that no amount of accuracy or care in setting up a
static balancer is going to measure this centrifugal effect. The wheel has
to be spinning fast enough to measure the side forces. Only a dynamic
balancer can do it. As tires have gotten smaller and wider, this force, or
couple, gains leverage and becomes a bigger factor in causing front-end
shake or shimmy. It takes an expert to tell this shake from the shake you
get from bad static balance, which actually is the wheel hopping up and
down, but which translates, through the suspension geometry and through play
in the bearings, to shakes that are hard to distinguish from bad dynamic
balance.

FWIW, this is the exact same principle as static versus dynamic balance of a
tool and toolholder assembly for a high speed milling machine.


--
Ed Huntress




--
Steve W.
Near Cooperstown, New York

Life is not like a box of chocolates
it's more like a jar of jalapenos-
what you do today could burn your ass tomorrow!
  #19   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 12,529
Default can anyone tell me what this thing is really really used for?


"Steve W." wrote in message
...
Ed Huntress wrote:


This discussion is always hampered by not having illustrations --
animated ones are best -- and I've had a heck of a time over the years
discussing it just in words. But I'll try. Bear with me.

What you're describing, if I understand you correctly, is a static
balancing system that makes its measurement by rotating the wheel around
its axis, allowing a pointer to swing through a circle. The radius of
that circle is the measure of relative imbalance.

But that's still static balance you're measuring -- the displacement of
weight around the wheel, in just one plane, which is a plane that is
perpendicular to the wheel axis (the axis of an axle through the wheel.)

Dynamic balance is something completely different. Some automotive tech
literature actually describes it incorrectly. There are several ways to
describe it correctly but I'll try an example:

Say you start with a perfectly balanced wheel and tire, and you put it on
your static balancer. Now put a wheel weight in one spot on the outside
rim. Now put the same amount of weight on the inside rim, 180 degrees
away from the first weight. Check it with your static balancer; if you
did it right, it still indicates that the wheel is perfectly balanced.


Not going to happen. The heavy spot on the tire will still show heavy. The
180 out weight will only offset the weight you added. I proved this to
someone who sells dynamic balancers by doing your exact test in front of
him. Tire started off 1 oz off. Added 1 oz to just the one side. then
added a duplicate weight 180 out on the back of the rim. Put it back on
the bubble and guess what. It showed the tire was STILL 1 oz. out of
balance.at the same spot on the rim.


Hey, Steve, take a look again at the example. I said that the wheel and tire
started out PERFECTLY BALANCED. In other words, there was no "heavy spot" to
begin with in the example.

In your example, the two weights balanced each other, but they didn't
balance the original out-of-balance condition.



But put it on a dynamic balancer and spin it at the (typical) 300 rpm,
and you'll see that it's way the hell out of whack. The wheel is wobbling
from side to side like a drunk.


And it should wobble. You have NOT balanced the tire properly.


Ah, it was balanced properly before we even started. g



The reason is that centrifugal force is acting on those weights, forcing
them to seek the plane of the wheel's rotation. When the weight on the
outside rim is at the top of rotation, the centrifugal force vector is
trying to push it as far from the axis of rotation as possible. What's
"possible" is that the weight wants to swing in an arc to one side, so
that it's farther from the axle. For this example, say that it's being
pushed to the right.


And if you had properly used the static balancer it would show it being
balanced. Like I said it requires a brain to use on properly.


Yes, it WOULD show that it was properly balanced on a static balancer, after
the two weights are put on it. But it isn't. Put it on the car, and the
front end will wobble all over the place.

snip

--
Ed Huntress


  #20   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 680
Default can anyone tell me what this thing is really really used for?


"Steve W." wrote: (clip) Like I said it requires a brain to use on
properly. (clip)
^^^^^^^^^^^^^^^^^^^^^^
Are you suggesting that you have a brain, and Ed Huntress does not? You're
not smart enough to know what you don't know.




  #21   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 3,146
Default can anyone tell me what this thing is really really used for?

On Apr 7, 1:08*pm, "Ed Huntress" wrote:
"Jim Wilkins" wrote in message
[futile exercise in descriptive writing??]


This discussion is always hampered by not having illustrations -- animated
ones are best -- and I've had a heck of a time over the years discussing it
just in words. But I'll try. Bear with me.

What you're describing, if I understand you correctly, is a static balancing
system that makes its measurement by rotating the wheel around its axis,
allowing a pointer to swing through a circle. The radius of that circle is
the measure of relative imbalance.


There is no pointer and no bubble. The level reference is a neighbor's
driveway when sighting over the wheel. I suspended the wheel at its 3-
dimensional center of gravity, empirically determined, then moved the
suspension point about half a millimeter upward by backing out the
1/2-20 bolt.

...
Say you start with a perfectly balanced wheel and tire, and you put it on
your static balancer. Now put a wheel weight in one spot on the outside rim.
Now put the same amount of weight on the inside rim, 180 degrees away from
the first weight. Check it with your static balancer; if you did it right,
it still indicates that the wheel is perfectly balanced.


It does.

But put it on a dynamic balancer and spin it ...
The reason is that centrifugal force is acting on those weights, forcing
them to seek the plane of the wheel's rotation.


Exactly. The wheel is statically balanced but it wobbles when turned.
I think a normal bubble balancer won't allow the wheel to wobble as it
spins. The tradeoff is extremely high maintenance on mine.

...Very sensitive electronic
balancers only have to rotate the wheel slowly to achieve the same result.


Ed Huntress


I model this as a thin disk weight on a pendulum. The bubble shows if
the pendulum rod is vertical. Static unbalance tilts the pendulum.

A dynamically unbalanced tire on a static balancer cone equals the
disk tilted at an angle but welded to the pendulum rod. At rest, the
pendulum rod is still vertical. If you spin the disk it tries to
flatten out, which tries to make the pendulum rod's suspension point
move in a circle. Maybe the idea of the long stem on the static
balancer is to allow this??

Mine works by having a -very- short pendulum rod that lets the
rotating disk flatten out easily.

Jim Wilkins
  #22   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 12,529
Default can anyone tell me what this thing is really really used for?


"Jim Wilkins" wrote in message
...
On Apr 7, 1:08 pm, "Ed Huntress" wrote:
"Jim Wilkins" wrote in message
[futile exercise in descriptive writing??]


This discussion is always hampered by not having illustrations -- animated
ones are best -- and I've had a heck of a time over the years discussing
it
just in words. But I'll try. Bear with me.

What you're describing, if I understand you correctly, is a static
balancing
system that makes its measurement by rotating the wheel around its axis,
allowing a pointer to swing through a circle. The radius of that circle is
the measure of relative imbalance.


There is no pointer and no bubble. The level reference is a neighbor's
driveway when sighting over the wheel. I suspended the wheel at its 3-
dimensional center of gravity, empirically determined, then moved the
suspension point about half a millimeter upward by backing out the
1/2-20 bolt.


...
Say you start with a perfectly balanced wheel and tire, and you put it on
your static balancer. Now put a wheel weight in one spot on the outside
rim.
Now put the same amount of weight on the inside rim, 180 degrees away from
the first weight. Check it with your static balancer; if you did it right,
it still indicates that the wheel is perfectly balanced.


It does.


But put it on a dynamic balancer and spin it ...
The reason is that centrifugal force is acting on those weights, forcing
them to seek the plane of the wheel's rotation.


Exactly. The wheel is statically balanced but it wobbles when turned.
I think a normal bubble balancer won't allow the wheel to wobble as it
spins. The tradeoff is extremely high maintenance on mine.


...Very sensitive electronic
balancers only have to rotate the wheel slowly to achieve the same result.


Ed Huntress


I model this as a thin disk weight on a pendulum. The bubble shows if
the pendulum rod is vertical. Static unbalance tilts the pendulum.


A dynamically unbalanced tire on a static balancer cone equals the
disk tilted at an angle but welded to the pendulum rod. At rest, the
pendulum rod is still vertical. If you spin the disk it tries to
flatten out, which tries to make the pendulum rod's suspension point
move in a circle. Maybe the idea of the long stem on the static
balancer is to allow this??


I'd have to see this thing at work but it sounds as if you might have made
yourself a dynamic balancer. Your model doesn't help me but I may just be
visualizing it wrong.

In any case, once you understand the principle you know what's going on.
That's the most important thing.

--
Ed Huntress


  #23   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 549
Default can anyone tell me what this thing is really really used for?



I'd have to see this thing at work but it sounds as if you might have made
yourself a dynamic balancer. Your model doesn't help me but I may just be
visualizing it wrong.

In any case, once you understand the principle you know what's going on.
That's the most important thing.

--
Ed Huntress



I still have one of the old spark style dynamic units someplace buried
in the shop. Haven't used it in years though. Not sure if it even works
any more.

Oh and ED I misread your post. Sorry.
However it is possible to balance a tire statically and eliminate any
tire wobble. It takes a lot of practice at reading the tire and knowing
your equipment. That takes time and effort. Both of which are in short
supply in the tire chain shops. Most of the boys I see in those places
have a hard time setting the air pressure!



--
Steve W.
  #24   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 3,146
Default can anyone tell me what this thing is really really used for?

On Apr 7, 10:19*pm, "Ed Huntress" wrote:
"Jim Wilkins" wrote in message


I post here to practice writing clear explanations of technical
subjects. I have no trouble visualizing the motions and forces of
moving parts, enormous trouble converting that image into a linear
written description. One little paragraph takes an hour or two and
still doesn't sound right, but you guys aren't paying. In real life I
draw sketches or sometimes have to machine a model or prototype the
circuit I've proposed.

Jim Wilkins
  #25   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 129
Default can anyone tell me what this thing is really really used for?


"Karl Townsend" wrote in message
anews.com...
Just what you said: to balance wheel/tire assemblies. Before spin
balancers, this was an accepted method of statically balancing a wheel.


Static balancers do as good a job as the new dynamic units, but they are
fussy and slow.


No way, Jose. I used to bust-n-balance tires as part of my job and a crappy
dynamic balancer beat a good bubble balancer any day.

You need some spelling lessons, too.g

-Carl




  #26   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 680
Default can anyone tell me what this thing is really really used for?


"Carl Byrns" wrote: (clip) You need some spelling lessons, too.g
^^^^^^^^^^^^^^^^^^
Spelling error(s) in the following quote? "Static balancers do as good a
job as the new dynamic units, but they are
fussy and slow." I couldn't find any, not could my specc check.



  #27   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 680
Default can anyone tell me what this thing is really really used for?


"Leo Lichtman" wrote: I couldn't find any, not could my specc check.
^^^^^^^^^^^^^^^^^^
I sould have used Spell Check on my own post.




  #28   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 129
Default can anyone tell me what this thing is really really used for?


"Leo Lichtman" wrote in message
...

"Carl Byrns" wrote: (clip) You need some spelling lessons, too.g
^^^^^^^^^^^^^^^^^^
Spelling error(s) in the following quote? "Static balancers do as good a
job as the new dynamic units, but they are
fussy and slow." I couldn't find any, not could my specc check.



A running gag with Karl and myself.

-Carl (not part of the secret Carl conspiracy)


  #29   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 129
Default can anyone tell me what this thing is really really used for?


"Steve W." wrote in message
...

I still have one of the old spark style dynamic units someplace buried in
the shop. Haven't used it in years though. Not sure if it even works any
more.

Oh and ED I misread your post. Sorry.
However it is possible to balance a tire statically and eliminate any
tire wobble.


No, it is not. A bubble balancer can only tell where a wheel is heavy/light
across the diameter, it treats the wheel like a two-dimensional disk.
A dynamic balancer treats the wheel like a cylinder and can find the
heavy/light areas in three dimensions.

-Carl


  #30   Report Post  
Posted to rec.crafts.metalworking
external usenet poster
 
Posts: 680
Default can anyone tell me what this thing is really really used for?


"Ronald Thompson" wrote: Now this is fummy!
^^^^^^^^^^^^^^^^^^
I wasn't trying to be fussy.


Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
What is this thing? FragileWarrior Home Repair 13 February 11th 07 06:55 PM
Same thing brush7734 Metalworking 0 November 24th 05 01:03 PM
Here is a gun thing Waynemak Metalworking 3 March 10th 05 10:09 PM
is there such a thing? Jim M Home Repair 5 January 31st 05 01:32 AM
What's this leaky thing in my boiler...? - thing.jpg (0/1) fred UK diy 9 August 21st 04 11:51 PM


All times are GMT +1. The time now is 06:58 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"