Metalworking (rec.crafts.metalworking) Discuss various aspects of working with metal, such as machining, welding, metal joining, screwing, casting, hardening/tempering, blacksmithing/forging, spinning and hammer work, sheet metal work.

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Brad H
 
Posts: n/a
Default Selenium Rectifier replacement

I need to replace the selenium rectifier stack in an old battery
charger to bring it back to life. The battery charger is rated at
7.5V-80Amps dc and 14.5V 50Amps DC. It is set up with multiple primary
windings selected by a switch. I verified that the transformer is
good.
Does anyone have a recommendation for a good replacement rectifier
diode set that will handle this current? Will I have to use separate
diodes and build it to get 80Amp capability?
The amp meter is also shot, and I might entertain replacing that if its
cost effective. Any ideas on a small 2" x 2" panel mount 80A dc meter?

  #2   Report Post  
jim rozen
 
Posts: n/a
Default

In article .com, Brad H
says...

I need to replace the selenium rectifier stack in an old battery
charger to bring it back to life. The battery charger is rated at
7.5V-80Amps dc and 14.5V 50Amps DC. It is set up with multiple primary
windings selected by a switch. I verified that the transformer is
good.
Does anyone have a recommendation for a good replacement rectifier
diode set that will handle this current? Will I have to use separate
diodes and build it to get 80Amp capability?
The amp meter is also shot, and I might entertain replacing that if its
cost effective. Any ideas on a small 2" x 2" panel mount 80A dc meter?


You can replace the Se unit with any silicon bridge, or make one
up from individual diodes - as long as you keep the 80 amp number
in mind. Go to digi-key and search.

You can replace the amp meter with any small milliameter by using
a shunt formed from a short piece of smaller gage copper wire.
Some experimentation required for that. It will be easier to find
a small milliameter like that then a surplus 80 amp meter.

Jim


--
==================================================
please reply to:
JRR(zero) at pkmfgvm4 (dot) vnet (dot) ibm (dot) com
==================================================
  #3   Report Post  
Jerry Martes
 
Posts: n/a
Default


"Brad H" wrote in message
oups.com...
I need to replace the selenium rectifier stack in an old battery
charger to bring it back to life. The battery charger is rated at
7.5V-80Amps dc and 14.5V 50Amps DC. It is set up with multiple primary
windings selected by a switch. I verified that the transformer is
good.
Does anyone have a recommendation for a good replacement rectifier
diode set that will handle this current? Will I have to use separate
diodes and build it to get 80Amp capability?
The amp meter is also shot, and I might entertain replacing that if its
cost effective. Any ideas on a small 2" x 2" panel mount 80A dc meter?


Brad

Do you have access to broken alternators. Their diodes can be used if
cost is a consideration.
The amp meter from an old truck might be affordable too.

Jerry


  #4   Report Post  
Grant Erwin
 
Posts: n/a
Default

Brad H wrote:
I need to replace the selenium rectifier stack in an old battery
charger to bring it back to life. The battery charger is rated at
7.5V-80Amps dc and 14.5V 50Amps DC. It is set up with multiple primary
windings selected by a switch. I verified that the transformer is
good.
Does anyone have a recommendation for a good replacement rectifier
diode set that will handle this current? Will I have to use separate
diodes and build it to get 80Amp capability?
The amp meter is also shot, and I might entertain replacing that if its
cost effective. Any ideas on a small 2" x 2" panel mount 80A dc meter?


Whatever you do it won't be cheap unless you get incredibly lucky. And you will
also need luck to find a drop-in panel meter.

Other than that, it should be easy to find a rectifier and meter for your
ratings, just watch ebay for awhile. Not too many buyers need those specs. When
you get your rectifier, take the time to find the actual datasheet, download it,
and read it for the manufacturer's suggestions on mounting especially heat
sinking, and use new heat sink grease. If you have to retrofit a new panel meter
with a slightly different footprint it isn't too hard to cut out panels with a
jeweler's saw, or else make a bunch of punches along your profile and then use a
small sanding drum in a Dremel tool (or carbide burr in a die grinder, or...) to
clean up. You can also chain drill, although I hate drilling sheet metal.

GWE
  #5   Report Post  
 
Posts: n/a
Default

I've done a fair amount of selenium replacements in old TVs back in the
stone-age(tubes). You can replace the rectifier part of the function
with any suitably spec'ed silicon replacement, full-wave bridge units
are cheap. Check the usual electronic surplus joints on the web like
All Electronics, Digi-Key and Mouser are two retail outfits that don't
mind onesie orders. Surplus Center out of Lincoln, NE and C&H Sales
also have both rectifiers and amp meters from time to time.

The other thing about seleniums is that they've got quite a voltage
drop, part of the replacement procedure was adding a power resistor in
series to get the proper voltage to match the original selenium setup.
An 80 amp power resistor might be a little spendy. You really don't
want too high a voltage applied to your batteries or they'll boil and
overheat. The selenium rectifier added something resembling voltage
regulation to the circuit, too, with that voltage drop.

Stan



  #6   Report Post  
Chuck Sherwood
 
Posts: n/a
Default

The other thing about seleniums is that they've got quite a voltage
drop, part of the replacement procedure was adding a power resistor in
series to get the proper voltage to match the original selenium setup.
An 80 amp power resistor might be a little spendy.


How about an extra diode in series with the output after the bridge?
This will drop the voltage about 1v under heavy load. Better be a
big diode with a heat sink though. This also protects the bridge
if someone hooks up the leads backwards. Without this diode, connecting
the leads to the battery backwards will provide a short circuit across
the transformer secondary. Been there, done that, replace the bridge
and added a fuse for the next time. A diode would have been better
than a fuse, but the extra voltage drop was too much for my transformer.

  #7   Report Post  
Tim Wescott
 
Posts: n/a
Default

Chuck Sherwood wrote:
The other thing about seleniums is that they've got quite a voltage
drop, part of the replacement procedure was adding a power resistor in
series to get the proper voltage to match the original selenium setup.
An 80 amp power resistor might be a little spendy.



How about an extra diode in series with the output after the bridge?
This will drop the voltage about 1v under heavy load. Better be a
big diode with a heat sink though. This also protects the bridge
if someone hooks up the leads backwards. Without this diode, connecting
the leads to the battery backwards will provide a short circuit across
the transformer secondary. Been there, done that, replace the bridge
and added a fuse for the next time. A diode would have been better
than a fuse, but the extra voltage drop was too much for my transformer.

The resistance of the selenium rectifier would limit the current of a
charger; using another silicon diode would not. I would add the extra
diode if I could, but before I did that I would make sure that I had
enough resistance is the circuit to equal the equivalent series
resistance of the selenium rectifier.

It may be cheaper, in fact, to get your hands on a bunch of 5A
rectifiers and load them with lower power resistors rather than finding
a single 80A bridge (at the cost of more work, of course). Then connect
them like so:


___
.----|----|___|--.
| |
| ___ |
------o-o--|----|___|--o-o------
| |
| ___ |
'--|----|___|----'
created by Andy´s ASCII-Circuit v1.24.140803 Beta www.tech-chat.de

Just make sure that:

* the parallel equivalent resistance adds up to your desired resistance,
* the current capacity of the diodes adds up to your desired current
capacity,
* the voltage drop across the resistors is at least as much as that
across the diodes,
* the resistor power ratings are observed,
* and that if one of the diodes fails open, the others will follow
in short order.

--

Tim Wescott
Wescott Design Services
http://www.wescottdesign.com
  #8   Report Post  
Brad H
 
Posts: n/a
Default


So I can parallel either diodes alone, or rectifier blocks to get
increased current capability? I understand about the cascade failure
if one should go. Since the charger has about 6 taps on the primary,
for increasing rate of charge (simply higher voltages) can't one just
select a lower setting and ignore the voltage drop the old selenium
rectifier had? I'm not quite sure I understand how the old unit acted
as a voltage regulator. Is that just because it had resistance/voltage
drop that modern diodes don't have?
The old amp meter has a shunt of about 1/2" wide copper about
1/16" thick, so it was just a milliamp meter with a calibrated scale.
I suppose I could hook up something like an old toaster with a known dc
resistance to calibrate a surplus one if I wished.
Alternator diodes are a good idea. They might be rated high enough
to do the job individually, without paralleling them. I looked at some
online places and didn't see much over 50A with a quick peek, hence the
first post here.
The old unit has the selenium stack under a fan, so it should be
easy to mount the new rectifier on a surplus heat sink and place it in
the air flow.
This was a curb find, so at a minimum its a good high current/low
voltage ac transformer.

  #9   Report Post  
Lloyd E. Sponenburgh
 
Posts: n/a
Default


"Brad H" wrote in message
ups.com...

So I can parallel either diodes alone, or rectifier blocks to get
increased current capability? I understand about the cascade failure
if one should go.


A tiny amount of resistance in series with each diode will help equalize
currents among them.

But this is getting crazy. Bridges with 500 Amp peak capacity are
inexpensive enough not to have to cludge something together. I don't think
your transformer will deliver that.

LLoyd




  #10   Report Post  
Chuck Sherwood
 
Posts: n/a
Default

So I can parallel either diodes alone, or rectifier blocks to get
increased current capability? I understand about the cascade failure


You cannot parallel diodes directly because they will have a small
voltage mismatch and one diode will hog all the current. You
can only parallel diodes if you force them to share current
by putting a small resister in series with each diode.


if one should go. Since the charger has about 6 taps on the primary,
for increasing rate of charge (simply higher voltages) can't one just
select a lower setting and ignore the voltage drop the old selenium
rectifier had?


Seems very reasonable and worth a try.





  #11   Report Post  
Brad H
 
Posts: n/a
Default

That's what I hoped, but so far digi-key, Mouser, and all electronics
are coming up with 50A as the max. They are only ~$ 2.50 though so
using two in parallel would be cheap.

  #12   Report Post  
Eric R Snow
 
Posts: n/a
Default

BIG SNIP
. You can also chain drill, although I hate drilling sheet metal.

GWE

Grant,
Next time you need to drill holes in sheet metal go buy a "Bullet"
Drill. These are (were?) made by Balck and Decker. Anyway, they have a
grind on them like an endmill except they have a small split point
that extends away from the drill face. When drilling you end up with a
little washer. They are great for drilling sheet metal.
ERS
  #14   Report Post  
Chuck Sherwood
 
Posts: n/a
Default

Chuck,
I built a three phase rectifier that used 4 1/2 bridges. Actually, I
had 9 winding to contend with. This rectifier assembly is being used
to power the servos in a CNC conversion. If one diode hogged all the
current it would have blown already. Am I just lucky? The rectifier
bridge assembly recieves 90 VAC from the xmfr. The servos draw 15 amps
max. The output from the rectifiers goes into an electrolitic cap for
filtering before going to the servo amps. Should I put resistors in
between the diodes and the xmfr? If so, what values do I need?
Thanks,
Eric R Snow


I don't understand your circuit; If you have diodes connected directly
in parallel good engineering practice is to put resisters in series.

However, since you say its a 3 phase rectifier, I suspect you have the
outputs connected to the same cap but the inputs are connected to
different windings. In this case your diodes are not connected in parallel
and you have nothing to worry about. In fact diodes in a 3 phase
rectifier are not working nearly as hard as diodes with single phase
input because the input phases overlap.

chuck
  #15   Report Post  
carl mciver
 
Posts: n/a
Default

"Brad H" wrote in message
ups.com...
| That's what I hoped, but so far digi-key, Mouser, and all electronics
| are coming up with 50A as the max. They are only ~$ 2.50 though so
| using two in parallel would be cheap.

Surplus sources for rectifiers are phenomenally cheaper than new, as
well as ebay. A diode is just as good new or used, providing it hasn't been
cooked excessively.
I highly recomend avoiding parallelling diodes. One will always pass
more than the other, and that one will get hotter than the other, allowing
it to pass more current, thus leading to thermal overload. Spend the money
you'd spend on two parallel diodes on one with the right rating and save
yourself the hassle of trying to pack it all in. Just ain't worth it.

Check this from ebay out:
http://cgi.ebay.com/ws/eBayISAPI.dll...tegory=73 142
&rd=1
You can find more on ebay and elsewhere by patient searching. I'm
keeping an eye out for a set of four for a welder DC conversion at a good
price. They're out there, you just gotta look.

These are cheap but can be made to work with one extra wire fed back to
switch them on. Great starting price.
http://cgi.ebay.com/ws/eBayISAPI.dll...tegory=36 332
&rd=1

And you can do a search on ebay for "shunt meter" for your high current
application.



  #16   Report Post  
william_b_noble
 
Posts: n/a
Default

I disagree with the note below - get a 100 miliamp meter and make a shunt
out of 12 gauge wire - start with about a foot - apply a known load and
check calibration - make the shunt longer or shorter as required.
Note - if "shunt" doesn't mean anything to you, I mean to take a length of
12 gauge wire and connect it across the meter terminals (like a short
circuit) - you want to make a 1000 to 1 divider so you don't need much
resistance.


"Grant Erwin" wrote in message
...
Brad H wrote:
I need to replace the selenium rectifier stack in an old battery
charger to bring it back to life. The battery charger is rated at
7.5V-80Amps dc and 14.5V 50Amps DC. It is set up with multiple primary
windings selected by a switch. I verified that the transformer is
good.
Does anyone have a recommendation for a good replacement rectifier
diode set that will handle this current? Will I have to use separate
diodes and build it to get 80Amp capability?
The amp meter is also shot, and I might entertain replacing that if its
cost effective. Any ideas on a small 2" x 2" panel mount 80A dc meter?


Whatever you do it won't be cheap unless you get incredibly lucky. And you
will also need luck to find a drop-in panel meter.

Other than that, it should be easy to find a rectifier and meter for your
ratings, just watch ebay for awhile. Not too many buyers need those specs.
When you get your rectifier, take the time to find the actual datasheet,
download it, and read it for the manufacturer's suggestions on mounting
especially heat sinking, and use new heat sink grease. If you have to
retrofit a new panel meter with a slightly different footprint it isn't
too hard to cut out panels with a jeweler's saw, or else make a bunch of
punches along your profile and then use a small sanding drum in a Dremel
tool (or carbide burr in a die grinder, or...) to clean up. You can also
chain drill, although I hate drilling sheet metal.

GWE



  #17   Report Post  
jim rozen
 
Posts: n/a
Default

In article 1121921771.c90464f5d3f6ab8e4b5b0995af074600@teran ews,
william_b_noble says...

... - get a 100 miliamp meter and make a shunt
out of 12 gauge wire


LOL. I did this by accident on the battery charger I made from
surplus stuff. I had a nice 5 amp meter, and a 50 amp panel
meter as well.

I wanted to be able to put them in series to read them both,
but didn't want to burn out the smaller one or bend the needle.
So I put a toggle switch across the 5 amp one, to short it out
when I went above 5 amps.

The odd thing is, once I close the switch, both meter needles
deflect the exact same amount - the wire and switch make a
perfect shut to make the 5 amp meter read 10x less senstive!

Jim


--
==================================================
please reply to:
JRR(zero) at pkmfgvm4 (dot) vnet (dot) ibm (dot) com
==================================================
  #18   Report Post  
Eric R Snow
 
Posts: n/a
Default

On 20 Jul 2005 21:32:48 GMT, (Chuck
Sherwood) wrote:

Chuck,
I built a three phase rectifier that used 4 1/2 bridges. Actually, I
had 9 winding to contend with. This rectifier assembly is being used
to power the servos in a CNC conversion. If one diode hogged all the
current it would have blown already. Am I just lucky? The rectifier
bridge assembly recieves 90 VAC from the xmfr. The servos draw 15 amps
max. The output from the rectifiers goes into an electrolitic cap for
filtering before going to the servo amps. Should I put resistors in
between the diodes and the xmfr? If so, what values do I need?
Thanks,
Eric R Snow


I don't understand your circuit; If you have diodes connected directly
in parallel good engineering practice is to put resisters in series.

However, since you say its a 3 phase rectifier, I suspect you have the
outputs connected to the same cap but the inputs are connected to
different windings. In this case your diodes are not connected in parallel
and you have nothing to worry about. In fact diodes in a 3 phase
rectifier are not working nearly as hard as diodes with single phase
input because the input phases overlap.

chuck

Greetings Chuck,
Boy, this diode thing has been bugging me for a long time and you just
answered the question. Yes, the outputs are indeed paralleled and
connected to the filter cap. And the inputs are each connected to one
of 9 windings from the three phase xmfr. Now I understand that when
people speak of parallel diodes they mean the inputs and outputs are
connected in parallel. This explains why the diodes haven't blown.
Thank You,
Eric R Snow
  #19   Report Post  
Wild Bill
 
Posts: n/a
Default

You'll need to determine what type of rectification is used if you intend to
use the unit as a battery charger. Charging lead-acid batteries with too
high of a voltage will shorten their life. The transformer output voltage
(before rectifiers) could possibly be 18VAC or more.

The added resistance that Stan and the others have mentioned is what
typically complicates replacing selenium rectifiers with diodes.
If the transformer's secondary windings are on the outer layers, it might be
possible to carefully remove winding turns to achieve the proper/desired
output voltage, when utilizing diodes.

If the transformer isn't a constant voltage-output type design, output
regulation would be a good idea, but maybe more involved than you'd care to
get into. Disregarding regulation, I'd try to obtain a 13.5V to 14V maximum
output voltage for charging 12V batteries.
I personally wouldn't want to charge 12V L/A batteries at more than 14V.

Changing the rectifier configuration will also change the output
capabilities.
1 rectifier is half-wave rectification
2 is full-wave
4 are the equivalent of a full-wave bridge rectifier
There are also other configurations for voltage doublers.
Battery charging doesn't necessarily require full-wave bridge rectification
(4 each or 2 pairs).

If you want to *not* use it as a battery charger, you can choose any diode
configuration you want to.

If you want a bench-use power supply, a jeweled moving-coil type meter would
be suitable, but for use as a portable battery charger, a ruggedized moving
vane type would be long lasting (typically less accurate, more of a
monitoring indicator).

Stud-mounted diodes are relatively easy to use in a variety of heatsink
designs. There are both case-anode and case-cathode for many stud-mount
diode types/ratings, so that using them on a single heat sink doesn't
require insulating washers/bushings, etc.

Diodes are destroyed in the blink of an eye, well really fast, and normal
fuses usually aren't fast enough to protect them (common circuit breakers
certainly won't).
Fast acting rectifier protection diodes are what's used to protect the
output semiconductors in DC motor drives.
Many battery charger owners have learned not to lend them to anyone, as it
often results in getting back a dead charger.

Choosing diodes with a high peak surge current rating (exceeding maximum x3
or more) will often add to their longevity.
I wouldn't even consider using under-rated diodes (connected in any manner,
or marginally useable diodes) to save money. The common failure mode for PN
junctions is shorted, so you can end up with an AC output.

Meters, rectifiers and lots of other great stuff can also be found at Fair
Radio in OH.
http://www.fairradio.com/

WB
..............

"Brad H" wrote in message
oups.com...
I need to replace the selenium rectifier stack in an old battery
charger to bring it back to life. The battery charger is rated at
7.5V-80Amps dc and 14.5V 50Amps DC. It is set up with multiple primary
windings selected by a switch. I verified that the transformer is
good.
Does anyone have a recommendation for a good replacement rectifier
diode set that will handle this current? Will I have to use separate
diodes and build it to get 80Amp capability?
The amp meter is also shot, and I might entertain replacing that if its
cost effective. Any ideas on a small 2" x 2" panel mount 80A dc meter?





----== Posted via Newsfeeds.Com - Unlimited-Uncensored-Secure Usenet News==----
http://www.newsfeeds.com The #1 Newsgroup Service in the World! 120,000+ Newsgroups
----= East and West-Coast Server Farms - Total Privacy via Encryption =----
  #20   Report Post  
 
Posts: n/a
Default

On Wed, 20 Jul 2005 10:36:27 -0700, Tim Wescott
wrote:

Chuck Sherwood wrote:
The other thing about seleniums is that they've got quite a voltage
drop, part of the replacement procedure was adding a power resistor in
series to get the proper voltage to match the original selenium setup.
An 80 amp power resistor might be a little spendy.



How about an extra diode in series with the output after the bridge?
This will drop the voltage about 1v under heavy load. Better be a
big diode with a heat sink though. This also protects the bridge
if someone hooks up the leads backwards. Without this diode, connecting
the leads to the battery backwards will provide a short circuit across
the transformer secondary. Been there, done that, replace the bridge
and added a fuse for the next time. A diode would have been better
than a fuse, but the extra voltage drop was too much for my transformer.

The resistance of the selenium rectifier would limit the current of a
charger; using another silicon diode would not. I would add the extra
diode if I could, but before I did that I would make sure that I had
enough resistance is the circuit to equal the equivalent series
resistance of the selenium rectifier.


If this charger is what I think it is, it has multiple taps on the
transformer and you adjust the charging rate by watching the meter.
A simpler solution is just to find a surplus Variac and put it on the
AC side.

It may be cheaper, in fact, to get your hands on a bunch of 5A
rectifiers and load them with lower power resistors rather than finding
a single 80A bridge (at the cost of more work, of course). Then connect
them like so:


___
.----|----|___|--.
| |
| ___ |
------o-o--|----|___|--o-o------
| |
| ___ |
'--|----|___|----'
created by Andy´s ASCII-Circuit v1.24.140803 Beta www.tech-chat.de

Just make sure that:

* the parallel equivalent resistance adds up to your desired resistance,
* the current capacity of the diodes adds up to your desired current
capacity,
* the voltage drop across the resistors is at least as much as that
across the diodes,
* the resistor power ratings are observed,
* and that if one of the diodes fails open, the others will follow
in short order.


Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
New Construction vs Replacement Windows? Jeremy Robbins Home Repair 3 September 22nd 04 04:10 PM
Replacement plastic drawer slides needed Timothy Lee Woodworking 7 July 16th 04 05:54 AM
Followup: York heat pump replacement - quote sounds high, thoughts? Peter Drier Home Repair 5 June 26th 04 08:31 AM
AC replacement part and or power strip Jeff Home Repair 11 May 15th 04 12:56 AM
Audio amp replacement filter caps ??? Asimov Electronics Repair 1 January 27th 04 03:55 AM


All times are GMT +1. The time now is 03:54 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 DIYbanter.
The comments are property of their posters.
 

About Us

"It's about DIY & home improvement"